Answer:
13:3
Step-by-step explanation:
A=x B=y
first; x= 360+y
later;x= 216+y
A:B
216+y: 1/2y = 6: 1
216+y/y÷2 =6/1
216+y = 3y
y = 108
first; x =360+y
360 +108
468
A:B = 468:108
13:3
The answer is B because thats the correct way to use a proper adjective
12———-100%
8 ———— x
X=(8*100)/12=800/12=66.66%
Then discount percent is 100-66.66=33.33%
So, first off it would help if you could define the terms irrational number and integer. Well, an irrational number is basically any real number that can't be expressed as a ratio of integers. They also cannot be represented by terminating or continuing decimals. And an integer is pretty much any number that cannot be written as a fraction or decimal, such as -2, 13, 257. It is not 2 and 1/2, or 4.75. Those would not be integers. Do you think you can figure out the difference?
Answer:
<u>a) x = 3</u>
<u>b) z = 10</u>
<u>c) p = 2</u>
<u>d) x = 7</u>
<u>e) u = 1</u>
Step-by-step explanation:
a) 2x = 6
Despejamos x dividiendo por 2 a amabos lados de la eacuacion.
(2/2)x = 6/2
<u>x = 3</u>
Si remplazamos x en la ecuación original:
2(3)=6
6 = 6
Queda demostrado.
b) 10 + z = 20
Despejamos z restando 10 en amabos lados de la eacuacion.
10-10+z = 20-10
<u>z = 10</u>
Si remplazamos z en la ecuación original:
10 + 10=20
20 = 20
Queda demostrado.
c) p + 9 = 11
Despejamos p restando 9 en amabos lados de la eacuacion.
p + 9 - 9 = 11-9
<u>p = 2</u>
Si remplazamos p en la ecuación original:
2 + 9 = 11
11 = 11
Queda demostrado.
d) 3x + 8 = 29
Despejamos x restando 8 en amabos lados de la eacuacion y luego divideindo por 3 en ambos lados de la ecuación.
3x+8-8 = 29-8
3x = 21
(3/3)x = 21/3
<u>x = 7</u>
Si remplazamos x en la ecuación original:
3(7) + 8 = 29
21 + 8 = 29
29 = 29
Queda demostrado
e) 2u + 8 = 10
Despejamos u restando 8 en amabos lados de la eacuacion y luego divideindo por 2 en ambos lados de la ecuación.
2u+8-8 = 10-8
2x = 2
(2/2)x = 2/2
<u>x = 1</u>
Si remplazamos x en la ecuación original:
2(1) + 8 = 10
2 + 8 = 10
10 = 10
Queda demostrado
Espero te haya sido de ayuda!