Given:
The graph of a parabola.
To find:
The domain, range and check whether it is a function or not.
Solution:
Domain: The set of x-values or input values is known as domain.
Range: The set of y-values or output values is known as range.
A relation is a function if their exist unique outputs for each input. In other words a graph is a relation if it pass the vertical line test.
Vertical line test: Each vertical line intersect the graph at most once.
The given function is defined for all real values of x which are greater than or equal to -3. So, the domain of the given graph is:

The given function values can be any real number. So, the range of the given graph is:

For x=0, we have two values of the function because the graph intercept the y-axis at two points.
Since the graph does not pass the vertical line test therefore the given graph is not a function.
Answer:
18 sq. unit
you can draw it on no. line
actually it's rectangle with l=3 and b=6
Answer:
is A
Step-by-step explanation:
Answer:
(f - g)(x) = -x² + 3x + 5
General Formulas and Concepts:
<u>Pre-Algebra</u>
<u>Algebra I</u>
- Function Notation
- Combining Like Terms
Step-by-step explanation:
<u>Step 1: Define</u>
f(x) = 3x + 5
g(x) = x²
(f - g)(x) is f(x) - g(x)
<u>Step 2: Find (f - g)(x)</u>
- Substitute: (f - g)(x) = 3x + 5 - x²
- Rewrite: (f - g)(x) = -x² + 3x + 5