Let X be the random variable that measures the number of incoming calls every ten minutes.
If the incoming calls to the system are Poisson distributed with a mean equal to 5 every 10 minutes, then the probability that there are k incoming calls in 10 minutes is
If the phone-answering system is capable of handling ten calls every 10 minutes, we want to find
P(X>10), or the equivalent 1 - P(X≤ 10).
But
1 - P(X≤ 10)= 1 -(P(X=0)+P(X=1)+...+P(X=10)) =
So, the probability that in a 10-minute period more calls will arrive than the system can handle is 0.0137
For the answer to the question above, It m<span>eans Brian is switching from saving $25 dollars a week to $35 dollars a week. Because every week Brian will add $25 to his savings account (In week 1, Brian adds $25. In week 2 Brian adds $50. And so on). So to change from 25 to 35 would mean that Brian is saving more money every week ($10 to be exact). </span>
<span>And if you're curious, $350 stands for the amount of money Brian has initially (because at 0 weeks, Brian has $350 in his savings account).
A piece wise function involves two or more functions over specific intervals. The equations of the two lines are the following y=x+1 and y=-x+2. The line y=-x+2 continues to the right and has an open circle at the end. So this point is not included. This means the interval is a greater than sign but not equal to. This means C is the answer.