1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
exis [7]
3 years ago
9

HELPPPP MEEE PLSSS To solve the system given below using substitution, it is best to start by

Mathematics
2 answers:
Lapatulllka [165]3 years ago
6 0

Answer:

it's true! it's easier to solve for y because there's no coefficient in front of it unlike the second one that has "9y."

timama [110]3 years ago
4 0

Answer:

true

Step-by-step explanation:

You might be interested in
Rational number are ___ natural numbers?<br> Always <br> Sometimes<br> Never
netineya [11]
Rational numbers are Sometimes natural numbers 
hope this helps :D
3 0
2 years ago
Read 2 more answers
(6y + 3) minus (3y + 6) when y=7
never [62]

Answer:

y

Step-by-step explanation:

((((2•3y3) -  22y2) -  3y) -  —) -  2

                               y    

STEP

4

:

Rewriting the whole as an Equivalent Fraction

4.1   Subtracting a fraction from a whole

Rewrite the whole as a fraction using  y  as the denominator :

                      6y3 - 4y2 - 3y     (6y3 - 4y2 - 3y) • y

    6y3 - 4y2 - 3y =  ——————————————  =  ————————————————————

                            1                     y          

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

STEP

5

:

Pulling out like terms

5.1     Pull out like factors :

  6y3 - 4y2 - 3y  =   y • (6y2 - 4y - 3)

Trying to factor by splitting the middle term

5.2     Factoring  6y2 - 4y - 3

The first term is,  6y2  its coefficient is  6 .

The middle term is,  -4y  its coefficient is  -4 .

The last term, "the constant", is  -3

Step-1 : Multiply the coefficient of the first term by the constant   6 • -3 = -18

Step-2 : Find two factors of  -18  whose sum equals the coefficient of the middle term, which is   -4 .

     -18    +    1    =    -17

     -9    +    2    =    -7

     -6    +    3    =    -3

     -3    +    6    =    3

     -2    +    9    =    7

     -1    +    18    =    17

Observation : No two such factors can be found !!

Conclusion : Trinomial can not be factored

Adding fractions that have a common denominator :

5.3       Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

y • (6y2-4y-3) • y - (6)     6y4 - 4y3 - 3y2 - 6

————————————————————————  =  ———————————————————

           y                          y        

Equation at the end of step

5

:

 (6y4 - 4y3 - 3y2 - 6)    

 ————————————————————— -  2

           y              

STEP

6

:

Rewriting the whole as an Equivalent Fraction :

6.1   Subtracting a whole from a fraction

Rewrite the whole as a fraction using  y  as the denominator :

        2     2 • y

   2 =  —  =  —————

        1       y  

Checking for a perfect cube :

6.2    6y4 - 4y3 - 3y2 - 6  is not a perfect cube

Trying to factor by pulling out :

6.3      Factoring:  6y4 - 4y3 - 3y2 - 6

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  -3y2 - 6

Group 2:  6y4 - 4y3

Pull out from each group separately :

Group 1:   (y2 + 2) • (-3)

Group 2:   (3y - 2) • (2y3)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

6.4    Find roots (zeroes) of :       F(y) = 6y4 - 4y3 - 3y2 - 6

Polynomial Roots Calculator is a set of methods aimed at finding values of  y  for which   F(y)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  y  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  6  and the Trailing Constant is  -6.

The factor(s) are:

of the Leading Coefficient :  1,2 ,3 ,6

of the Trailing Constant :  1 ,2 ,3 ,6

Let us test ....

  P    Q    P/Q    F(P/Q)     Divisor

     -1       1        -1.00        1.00    

     -1       2        -0.50        -5.88    

     -1       3        -0.33        -6.11    

     -1       6        -0.17        -6.06    

     -2       1        -2.00        110.00    

Note - For tidiness, printing of 13 checks which found no root was suppressed

Polynomial Roots Calculator found no rational roots

Adding fractions that have a common denominator :

6.5       Adding up the two equivalent fractions

(6y4-4y3-3y2-6) - (2 • y)      6y4 - 4y3 - 3y2 - 2y - 6

—————————————————————————  =  ————————————————————————

            y                            y            

Polynomial Roots Calculator :

6.6    Find roots (zeroes) of :       F(y) = 6y4 - 4y3 - 3y2 - 2y - 6

    See theory in step 6.4

In this case, the Leading Coefficient is  6  and the Trailing Constant is  -6.

The factor(s) are:

of the Leading Coefficient :  1,2 ,3 ,6

of the Trailing Constant :  1 ,2 ,3 ,6

Let us test ....

  P    Q    P/Q    F(P/Q)     Divisor

     -1       1        -1.00        3.00    

     -1       2        -0.50        -4.88    

     -1       3        -0.33        -5.44    

     -1       6        -0.17        -5.73    

     -2       1        -2.00        114.00    

Note - For tidiness, printing of 13 checks which found no root was suppressed

Polynomial Roots Calculator found no rational roots

Final result :

 6y4 - 4y3 - 3y2 - 2y - 6

 ————————————————————————

            y            

4 0
2 years ago
Read 2 more answers
Classify square root 36 A. Whole Number B. Integer C. Rational Number D. Irrational Number
aleksley [76]
Whole numbers<span><span>\greenD{\text{Whole numbers}}Whole numbers</span>start color greenD, W, h, o, l, e, space, n, u, m, b, e, r, s, end color greenD</span> are numbers that do not need to be represented with a fraction or decimal. Also, whole numbers cannot be negative. In other words, whole numbers are the counting numbers and zero.Examples of whole numbers:<span><span>4, 952, 0, 73<span>4,952,0,73</span></span>4, comma, 952, comma, 0, comma, 73</span>Integers<span><span>\blueD{\text{Integers}}Integers</span>start color blueD, I, n, t, e, g, e, r, s, end color blueD</span> are whole numbers and their opposites. Therefore, integers can be negative.Examples of integers:<span><span>12, 0, -9, -810<span>12,0,−9,−810</span></span>12, comma, 0, comma, minus, 9, comma, minus, 810</span>Rational numbers<span><span>\purpleD{\text{Rational numbers}}Rational numbers</span>start color purpleD, R, a, t, i, o, n, a, l, space, n, u, m, b, e, r, s, end color purpleD</span> are numbers that can be expressed as a fraction of two integers.Examples of rational numbers:<span><span>44, 0.\overline{12}, -\dfrac{18}5,\sqrt{36}<span>44,0.<span><span> <span>12</span></span> <span> </span></span>,−<span><span> 5</span> <span> <span>18</span></span><span> </span></span>,<span>√<span><span> <span>36</span></span> <span> </span></span></span></span></span>44, comma, 0, point, start overline, 12, end overline, comma, minus, start fraction, 18, divided by, 5, end fraction, comma, square root of, 36, end square root</span>Irrational numbers<span><span>\maroonD{\text{Irrational numbers}}Irrational numbers</span>start color maroonD, I, r, r, a, t, i, o, n, a, l, space, n, u, m, b, e, r, s, end color maroonD</span> are numbers that cannot be expressed as a fraction of two integers.Examples of irrational numbers:<span><span>-4\pi, \sqrt{3}<span>−4π,<span>√<span><span> 3</span> <span> </span></span></span></span></span>minus, 4, pi, comma, square root of, 3, end square root</span>How are the types of number related?The following diagram shows that all whole numbers are integers, and all integers are rational numbers. Numbers that are not rational are called irrational.
3 0
3 years ago
Read 2 more answers
What is the sum of the first five terms of the geometric sequence in which
garri49 [273]

Answer:

1/4

Step-by-step explanation:

4 0
3 years ago
How many dimes is 5.60
OverLord2011 [107]

Answer:

56

Step-by-step explanation:

a dime =10 cent

divide 5.6 by 0.1=56

3 0
3 years ago
Other questions:
  • What is 5% of 400 please add the formula for finding this if you can
    14·1 answer
  • What is the sum of measurements of the interior angles of a 12-gon?​
    11·2 answers
  • Two cars traveled equal distances in different amounts of time. Car A traveled the distance in 4 h, and Car B traveled the dista
    14·1 answer
  • GEOMETRY QUESTION NUMBER 2
    12·1 answer
  • Calculate the side lengths a and b to two decimal places.
    13·1 answer
  • PLEASE HELP PLEASE PLEASE DUE TONIGHT I HAVE NO IDEA HOW TO DO THIS
    15·1 answer
  • HELP PLZ !!!<br><br> 4) what is the value of x to the nearest tenth ? <br><br> refer to image above
    6·1 answer
  • Keisha is reading a 360 page book at a rate of 26 pages per day.Use a point-slope equation to determine how many pages she will
    12·2 answers
  • Dakota wants to build 8 birdhouses, he needs to point 6 square feet of plywood, for each birdhouse is the plywood cause $0.56 pe
    6·1 answer
  • Brad has 42 toy cars that he puts into 3 equal groups.
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!