Using the binomial distribution, it is found that there is a 0.4096 = 40.96% probability that he answers exactly 1 question correctly in the last 4 questions.
<h3>What is the binomial distribution formula?</h3>
The formula is:


The parameters are:
- x is the number of successes.
- n is the number of trials.
- p is the probability of a success on a single trial.
Considering that there are 4 questions, and each has 5 choices, the parameters are given as follows:
n = 4, p = 1/5 = 0.2.
The probability that he answers exactly 1 question correctly in the last 4 questions is P(X = 1), hence:


0.4096 = 40.96% probability that he answers exactly 1 question correctly in the last 4 questions.
More can be learned about the binomial distribution at brainly.com/question/24863377
#SPJ1
I hope this helps you
0,2 close 1
0,2>0,04
Answer:
0.4444 = 44.44% probability that the sum of the two numbers is greater than 3 but less than 7.
Step-by-step explanation:
A probability is the number of desired outcomes divided by the number of total outcomes.
A number is selected at random from each of the sets {2,3,4} and {1, 3, 5}.
The possible values for the sum are:
2 + 1 = 3
2 + 3 = 5
2 + 5 = 7
3 + 1 = 4
3 + 3 = 6
3 + 5 = 8
4 + 1 = 5
4 + 3 = 7
4 + 5 = 9
Find the probability that the sum of the two numbers is greater than 3 but less than 7?
4 of the 9 sums are greater than 3 but less than 7. So

0.4444 = 44.44% probability that the sum of the two numbers is greater than 3 but less than 7.