-(17/30)n^5+(113/12)n^4-(173/3)n^3+ (1915/12) n^2- ( 5813/30)n +85
there fore term number 7 is .... -146/1=-146

<h2>
Explanation:</h2>
In this exercise, we have the following functions:

And they are defined for all real numbers x. So we have to write the following expressions:
First expression:

That is, we subtract s(x) from r(x):

Second expression:

That is, we get the product of s(x) and r(x):

Third expression:
Here we need to evaluate:

First of all, we find the sum of functions r(x) and s(x):

Finally, substituting x = -2:

<h2>Learn more: </h2>
Parabola: brainly.com/question/12178203
#LearnWithBrainly
Answer:
y=1/∛4 divides the area in half
Step-by-step explanation:
since the minimum value of x² is 0 (for x=0 ) and for y=1
1 = 25*x² → x= ±√(1/25) = ±1/5
then the total area between y=1 and y = 25*x² is bounded to x=±1/5 and y=0 . Since there is a direct relationship between x and y , we can find the value of x=a that divides the region in 2 of the same area. thus
Area below x=C = Area above x=C
Area below x=C = Total area - Area below x=C
2*Area below x=C = Total area
Area below x=C = Total area /2
∫ 25*x² dx from x=c to x=-c = 1/2 ∫ 25*x² dx from x=1/5 to x=-1/5
25*[c³/3 - (-c)³/3] = 25/2 * [(1/5)³/3 - (-1/5)³/3]
2*c³/3 = (1/5)³/3
c = 1/(5*∛2)
thus
y=25* x² = 25*[1/(5*∛2)]² = 1/∛4
thus the line y=1/∛4 divides the area in half
7 and 7/8=63/8 and 3 and 1/4=13/4. 63/8 and 13/4 as common denominators are 63/8 and 26/8. 63/8-26/8=37/8. 37/8 as a mixed number is 4 5/8.
Answer:
La torre tiene 543.78 pies de altura.
Step-by-step explanation:
Podemos pensar en esta situación como si fuera un triángulo rectángulo, donde el cable es la hipotenusa y la torre es uno de los catetos. (Abajo se puede ver un dibujo de esta situación).
Nosotros queremos encontrar el valor de H, que es el cateto opuesto al ángulo conocido de 65°.
Entonces simplemente podemos usar la relación:
Sin(θ) = (cateto opuesto)/(hipotenusa)
donde:
cateto opuesto = H
θ = 65°
hipotenusa = 600 ft
sin(65°) = H/600ft
sin(65°)*600ft = H = 543.78 ft
La torre tiene 543.78 pies de altura.