Answer:  The given logical equivalence is proved below.
Step-by-step explanation:  We are given to use truth tables to show the following logical equivalence :
P ⇔ Q ≡ (∼P ∨ Q)∧(∼Q ∨ P)
We know that
two compound propositions are said to be logically equivalent if they have same corresponding truth values in the truth table.
The truth table is as follows :
P     Q      ∼P     ∼Q      P⇔ Q    ∼P ∨ Q     ∼Q ∨ P        (∼P ∨ Q)∧(∼Q ∨ P)
T     T         F        F             T             T                   T                       T
T     F         F        T             F             F                   T                       F
F     T         T        F             F             T                   F                       F
F     F         T        T             T             T                   T                       T
Since the corresponding truth vales for P ⇔ Q and (∼P ∨ Q)∧(∼Q ∨ P) are same, so the given propositions are logically equivalent.
Thus, P ⇔ Q ≡ (∼P ∨ Q)∧(∼Q ∨ P).
 
        
             
        
        
        
Answer:
The answer is A
Step-by-step explanation:
4.53 - 4.06 = .47
.47 is 10.4% of 4.53