Answer:
2 to the power of one sixth
Step-by-step explanation:
Assuming you don't already know this, any type of root can be expressed as an exponent. Generally speaking:
![\sqrt[n]{x} = {x}^{ \frac{1}{n} }](https://tex.z-dn.net/?f=%20%5Csqrt%5Bn%5D%7Bx%7D%20%20%3D%20%20%7Bx%7D%5E%7B%20%5Cfrac%7B1%7D%7Bn%7D%20%7D%20)
So you can rewrite the given fraction as

and then reduce as you normally would. That is, if the bases of the numerator and denominator are the same, then you can subtract the denominator's exponent from the numerator's exponent like so:

Since

the answer is
![{2}^{ \frac{1}{6} } \: or \: \sqrt[6]{2}](https://tex.z-dn.net/?f=%20%7B2%7D%5E%7B%20%5Cfrac%7B1%7D%7B6%7D%20%7D%20%20%5C%3A%20or%20%5C%3A%20%20%5Csqrt%5B6%5D%7B2%7D%20)
Answer:
the second and last sentences.
Step-by-step explanation:
Its the most reasonable!
We would have to see the square to determine that
Given:
Cylinder: radius = 8 yd; height = 4 yd
Surface Area = 2 π r h + 2 π r²
SA = 2 * 3.14 * 8 yd * 4yd + 2 * 3.14 * (8yd)²
SA = 200.96 yd² + 401.92 yd²
SA = 602.88 yd²
Volume = π r² h
V = 3.14 * (8yd)² * 4yd
V = 803.84 yd³
Dimension is cut in half. radius = 4yds ; height = 2yds
S.A = 2 * 3.14 * 4yd * 2yd + 2 * 3.14 * (4yd)²
S.A = 50.24 yd² + 100.48 yd²
SA = 150.72 yd²
V = 3.14 * (4yd)² * 2yd
V = 100.48 yd³
SA = 602.88 yd² - 150.72yd² = 452.16 yd²
V = 803.84 yd³ - 100.48 yd³ = 703.36 yd³