The table above gives values of f, f’, g, and g’ at selected values of x. If h(x) = f(g(x)), then h’(1) =
2 answers:
Answer
5
Explanation
h(x) = f(g(x))
h'(x) = f'(g(x))
so h'(1) = f'(g(1))
g(1) = -1
so f'(-1) which equals 5
Therefore h'(1) = 5
Answer:
h'(-1) = 5
Explanation:
Given - The table above gives values of f, f’, g, and g’ at selected values
of x.
x f(x) f'(x) g(x) g'(x)
-1 6 5 3 -2
1 3 -3 -1 2
3 1 -2 2 3
To find - If h(x) = f(g(x)), then h’(1) = ......?
Proof -
Given that,
h(x) = f(g(x))
⇒h'(x) = f'(g(x))
⇒h'(1) = f'(g(1))
Now,
g(1) = -1
⇒f'(-1) = 5
⇒h'(-1) = 5
You might be interested in
Answer:french
Explanation: bc in the mid 18 centuries the traveled to north america
• temperature
• warm-up-time
• cooling time
• regulation stability
Lol. Here I am.. Saying whatever the heck I want. :)