I would go with option C. x, in the first equation.
The X term has a coefficient of 3, the lowest common factor amongst the 3 terms making for easy isolation of the variable.
Answer:
<em><u /></em>
- <em><u>A. Draw a diameter of the circle. </u></em>
Explanation:
To<em> draw a square</em> you can <em>draw a circle</em> with a <em>compass</em> and then construct the inscribed square.
You can construct an inscribed square with a compass and a straightedge.
The <u>first step</u> is to draw the circle.
The <u>next</u> step is to <em>draw a diameter</em> (any line that passes through the center of the circle, which you marked when drew the circle). Hence, this is the correct answer to the queston, and it is described by the choice A.
After that, you will be able to draw the perpendicular bisector of the diameter. The two diameters drawn will mark four equidistant points on the circle which will be the four vertices of your square.
Finally, you just must join the adjacent vertices with the straightedge.
Answer:
It will be 0.123 (f)t
Step-by-step explanation:
Multiplying the plan by the patient list gives the usage for the upcoming days: [3 6 9 12 15]. Everyday multiplication (3 x 4) means using the plan with a single day of patients: [3] * [4] = [12].
Intuition For Convolution
Let's say the disease mutates and requires a multi-day treatment. You create a new plan: Plan: [3 2 1]
That means 3 units of the cure on the first day, 2 on the second, and 1 on the third. Ok. Given the same patient schedule ( [1 2 3 4 5]), what's our medicine usage each day?
Answer:
24 sections
Step-by-step explanation:
8 + 8 = 16
4+ 4 = 8
16 + 8 = 24
Step-by-step explanation:
a) Let y = f(x) = 3x - 2x^2
f(-2) = 3(-2) - 2(-2)^2 = p
= -6 - 8
= -14
= p
f(2.5) = 3(2.5) - 2(2.5)^2 = q
= 7.5 - 12.5
= -5
= q
b) graphing
c) From the graph, you should be able to verify the following:
i) f(0.5) = 3(0.5) - 2(0.5)^2 = 1
ii) 0.5 = 3x - 2x^2 or x = 1.3, 0.2
iii) the maximum occurs at
f(0.75) = 1.125
d) the equation for the line of symmetry is x = 0.75