the large bag is 5/6 lb, the smaller bags will be 1/3 lb, so it should be 5/6 ÷ 1/3
![\bf \cfrac{5}{6}\div \cfrac{1}{3}\implies \cfrac{5}{\underset{2}{~~\begin{matrix} 6 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}}\cdot \cfrac{~~\begin{matrix} 3 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}{1}\implies \cfrac{5}{2}\implies 2\frac{1}{2}](https://tex.z-dn.net/?f=%5Cbf%20%5Ccfrac%7B5%7D%7B6%7D%5Cdiv%20%5Ccfrac%7B1%7D%7B3%7D%5Cimplies%20%5Ccfrac%7B5%7D%7B%5Cunderset%7B2%7D%7B~~%5Cbegin%7Bmatrix%7D%206%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%7D%7D%5Ccdot%20%5Ccfrac%7B~~%5Cbegin%7Bmatrix%7D%203%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%7D%7B1%7D%5Cimplies%20%5Ccfrac%7B5%7D%7B2%7D%5Cimplies%202%5Cfrac%7B1%7D%7B2%7D)
Answer:
AD = 12 units
Step-by-step explanation:
AD = CD
so
4x = 10x-18
subtract 10x from both sides to get:
-6x = -18
divide each side by -6 to get:
x = 3
insert x into your problem and you get 4(3) which equals 12
Use FOIL. (First, Outside, Inside, Last). Remember to combine like terms afterwards.
(6x - 9)(5x + 4)
(6x)(5x) = 30x²
(6x)(4) = 24x
(-9)(5x) = -45x
(-9)(4) = -36
30x² + 24x - 45x - 36
combine like terms
30x² + (24x - 45x) - 36 => 30x² - 21x - 36 (answer)
-------------------------------------------------------------------------------------------------------
(3x² + 2x)(x - 6)
3x²(x) = 3x³
3x(-6) = -18x
2x(x) = 2x²
2x(-6) = -16x
Combine like terms
3x³ + 2x² - 18x - 16x
3x³ + 2x² - 34x is your answer
-------------------------------------------------------------------------------------------------------
(2x² - 5x + 3)(4x³ - 1)
FOIL: Distribute each number in one parenthesis to all monomials in the other
4x³(2x²) = 8x^5
4x³(-5x) = -20x^4
4x³(3) = 12x³
-1(2x²) = -2x²
-1(-5x) = 5x
-1(3) = -3
8x^5 - 20x^4 +12x³ - 2x² + 5x -3 is your answer
-------------------------------------------------------------------------------------------------------
hope this helps