Answer:
0 < t < 
After 1.67 days the stocks would be sold out.
Step-by-step explanation:
The price of a certain computer stock after t days is modeled by
p(t) = 100 + 20t - 6t²
Now we will take the derivative of the given function and equate it to zero to find the critical points,
p'(t) = 20 - 12t = 0
t = 
t =
days
Therefore, there are two intervals in which the given function is defined
(0,
) and (
, ∞)
For the interval (0,
),
p'(1) = 20 - 12(1) = 20
For the interval (
, ∞),
p'(2) = 20 - 12(2) = -4
Positive value of p'(t) in the interval (0,
) indicates that the function is increasing.
0 < t < 
Since at the point t = 1.67 days curve is showing the maximum, so the stocks should be sold after 1.67 days.
Answer:
0.18
Step-by-step explanation:
Answer:
<em><u>First box/top box is 2 because 8 - 6 = 2</u></em>
<em><u>Second box/bottom box is 1 because 8 - 7 = 1</u></em>
Hi there
So, if the track is 1/8 of a mile, let's call every lap a "one-eighth mile" run. We know John ran 24 laps, or that he ran 24 "one-eighth miles," just consecutive, one right after another. Let's stop worrying about rates or tricks or math for a second, and just ask: how many real miles is 24 "one-eighth" miles? We know it's less than 24---a lot less, since you have to go around 8 times just to get to 1 mile. Well wait, if we go around 8 times, we get 1 mile. That means if we go around 28, or 16 times, we get 2 miles; And let's just think to the next full mile---if we go 38, or 24 times, we get 3 miles. He did go around 24 times, so he must have run 3 miles on a 1/8 track.
Division and multiplication are inverses of each other. So we solved this by looking for an intuition for how many full miles corresponded to how many laps, with a bunch of steps of multiplication. But you can cut right to the chase and solve it faster with division---24 laps * 1 mile per 8 laps, means:
total distance = 24 Lap (1 mi / 8 Lap) total distance = 24/8 total distance = 3
Answer:
0.001831055
Step-by-step explanation:
Here, n = 16, p = 0.5, (1 - p) = 0.5 and x = 14
As per binomial distribution formula P(X = x) = nCx * p^x * (1 - p)^(n - x)
We need to calculate P(X = 14)
P(x =14) = 16C14 * 0.5^14 *(1-0.5)^2
= 120 * 0.5^14 *(1-0.5)^2
= 0.001831055