The weight average of the coordinates is -4
<h3>How to determine the
weight average?</h3>
The complete question is given as:
The coordinate -6 has a weight of 3 and the coordinate 2 has a weight of 1. And we need to calculate the weight average
The given parameters are:
- Coordinate -6 has a weight of 3
- Coordinate 2 has a weight of 1.
The weight average is then calculated as:
Weight average = Sum of (Weigh * Coordinate)/Sum of Weights
So, we have:
Weight average = (-6 * 3 + 2 * 1)/(3 +1)
Evaluate the products
Weight average = (-18 + 2)/(3 +1)
Evaluate the sum
Weight average = -16/4
Evaluate the quotient
Weight average = -4
Hence, the weight average of the coordinates is -4
Read more about average at
brainly.com/question/20118982
#SPJ1
<u>Complete question</u>
The coordinate -6 has a weight of 3 and the coordinate 2 has a weight of 1. Calculate the weight average
Answer:
2^5
explanation:
I did this already man this is easy
Answer: I think it it 5 if
Step-by-step explanation:
If I am wrong I am very sorry and if I am right could you please make me brainliest please?
Answer:
E(w) = 1600000
v(w) = 240000
Step-by-step explanation:
given data
sequence = 1 million iid (+1 and +2)
probability of transmitting a +1 = 0.4
solution
sequence will be here as
P{Xi = k } = 0.4 for k = +1
0.6 for k = +2
and define is
x1 + x2 + ................ + X1000000
so for expected value for W
E(w) = E( x1 + x2 + ................ + X1000000 ) ......................1
as per the linear probability of expectation
E(w) = 1000000 ( 0.4 × 1 + 0.6 × 2)
E(w) = 1600000
and
for variance of W
v(w) = V ( x1 + x2 + ................ + X1000000 ) ..........................2
v(w) = V x1 + V x2 + ................ + V X1000000
here also same as that xi are i.e d so cov(xi, xj ) = 0 and i ≠ j
so
v(w) = 1000000 ( v(x) )
v(w) = 1000000 ( 0.24)
v(w) = 240000
The total paycheck for the week is of $672 as Chris bacon work for 44 hours last week, regular pay $14 per hour and double time pay for overtime.
As given,
Regular pay per hour = $14
Overtime work payment= 2 × ($14)
Total hours work done last week = 44hours
Let regular timing be 8 hours per day 5 days a week
Total regular working hours = 8 × 5
= 40 hours
Over time = 44-40
= 4 hours
Payment check = (40 × 14)+ (4 × 28)
= $672
Therefore, The total paycheck for the week is of $672 as Chris bacon work for 44 hours last week.
Learn more about work here
brainly.com/question/18094932
#SPJ4