<span>MNO is similar to GHK by AA Similarity Postulate
Let's start by listing each triangle and the measurements of all three angles. For each triangle, we've been given the measurements of 2 of the angles and the 3 angle will simply be 180 minus the other 2 angles. I assume you can do the subtraction, so I'll simply list each triangle with all three angle measurements.
NMO: 79, 22, 79
GHK: 79, 79, 22
PQR: 20, 79, 81
DEF: 82, 22, 76
And the triangles NMO and GHK are similar to each other since they have the same angles. The order really doesn't matter since it's OK for similar triangles to be rotated or reflected. The key thing to remember in a triangle is that if you've been told what 2 of the angles are, you also know what the 3rd angle is since the sum of the angles of a triangle will always be 180.
So the answer is:
MNO is similar to GHK by AA Similarity Postulate"</span>
Since you did not attach any picture we cannot say for sure what is the correct answer, but we can discuss the options in order to find the most probable correct answer.
First of all, according to the Cavalieri's principle, an oblique cylinder has the same volume as a right cylinder with the same base surface area and same height.
A cross-section of an oblique cylinder will be a small right cylinder with the same base surface area and a height as small as possible.
I guess the oblique cylinder has height h and it is divided into many (probably 10) cross-sections.
Option A: <span>πr2h
This is exactly the volume of the right cylinder, therefore, unless you are given a cross-section of height h (which would be too easy), this won't be the correct answer.
Option B: </span><span>4πr2h
This is 4 times the right cylinder. Again, here the height of the cross-section should</span> be 4h, but it doesn't sound like a possible data (too easy again).
Option C: <span>1 10 πr2h
Here comes a n issue with the notation: I think the right number you meant to write is (1/10)</span>·πr2h and not 110·<span>πr2h.
If I am right, this means that your oblique cylinder of height h is divided into 10 cross-sections, and therefore the volume of each of these cross-sections will be a tenth of the volume of the oblique cylinder, which means </span>1/10·<span>πr2h.
Option D: </span><span>1 2 πr2h
Here, we have the same notation issue as before. I think you meant (1/2)</span>·<span>πr2h.
Here, your oblique cylinder height h should be divided into only 2 cross-sections. Now, we said the cross-section's height should be the smallest as possible, so an oblique cylinder divided only into two pieces doesn't sound good.
Therefore, the most probable correct answer will be C) </span>(1/10)·<span>πr2h</span>
6a: 11x+9
6b: 5y+14
6c: -3c-10
6d: 15x+10y
6e: -2n+13n
6f: 5w-5z
6g: 19x+8y+9
6h: 11a+4b-5
hope this helps and is correct!!
Answer:
these nuts because xyz means examin your zipper so therefore these nuts need to be zipped up
The Pacific Ocean has the lowest point, by 3000 meters