Answer:
I believe that the best answer to the question: How is it that the same tertiary structure of a protein can result from different primary structures? Would be, B: None of the above.
Explanation:
This is probably the best choice from all the ones in the list simply because due to specific portions of the other answers they make the statement incorrect.
It will help to remember this: proteins have primary, secondary and tertiary structures because when they first emerge from the trascription process from mRNA, they are a simple string where the most important factor is the sequence of aminoacids. It is this sequence which will determine the folding factor. However, there is another factor that must always be kept in mind; environmental factors (temperature, medium where the protein is, as well as location where it is being produced) will also play a role on how the folding will happen and on which of the aminoacids.
The evolvement of a protein chain from its primary, to its secondary and then tertiary shape (the only functional, or known as native state) depends on which of the aminoacids in a specific sequence has the necessary elements to form bonds (hydrogen bonds) with others and thus start the folding process.
Answer:
4.97097mi
Explanation:
1 km is equivalent to 0.621371mi
8 multiplied by 0.621371= 4.97097
Survivorship curve = so, first of all, it's a curve, as in a graph.
It describes "survivorship" - the rate of survival, in other words: out of 100 organisms that are born, how many survive. This rate is different among species, for example, most humans live out to most of their life span, and almost all can survive well beyond a reproductive age.
However, in frogs for example, many many individuals are born, but only few can survive to adulthood: most die very young, before reproductive age.
So if you hear about a new species: let's say dogs, and you want to know how long they would live, you would look at their sirvivorship curve (and in some breeds of dogs, those that are likely not to be in shelters, but in homes, the survivorship curve would be similar as in humans: almost all individuals born can live long.
sodium-potassium pump. n. The enzyme-based mechanism that maintains correct cellular concentrations of sodium and potassium ions by removing excess ions from inside a cell and replacing them with ions from outside the cell.
Answer:
Glucose is a six-carbon sugar that is directly metabolized by cells to provide energy. ... A glucose molecule is too large to pass through a cell membrane via simple diffusion. Instead, cells assist glucose diffusion through facilitated diffusion and two types of active transport.
Explanation: