The maximum diffraction order seen is 3.
<h3>What is the maximum diffraction order seen?</h3>
We know that the maximum angle of diffraction Q_m of the furthest bright fringe < Q = 90 degrees.
Here we need to compute the nth bright fringe for which is approximated to 90 degrees.
The angle of nth bright fringe is given by;
sin(Q_m) = n(λ)N
Approximating Q_m ≈ 90 degrees.
sin (90) = nλN
n = sin (90) / (λN)
n = 1 / ((580 x 10⁻⁶)500)
n = 3.5 orders
Since, we knew that Q_m < 90 degrees, we will choose n = 3 as the maximum number of orders.
Thus, the maximum diffraction order seen is 3.
Learn more about maximum diffraction here: brainly.com/question/14703089
#SPJ4
Answer:

Explanation:
If the collision is elastic and exactly head-on, then we can use the law of momentum conservation for the motion of the 2 balls
Before the collision

After the collision

So using the law of momentum conservation


We can solve for the speed of ball 1 post collision in terms of others:

Their kinetic energy is also conserved before and after collision


From here we can plug in 






T<u>he direction of motion</u> of the person relative to the water is <u>16.7° north of east.</u>
Why?
We can solve the problem by applying the Pitagorean Theorem, where the first speed (to the north) and the second speed (to the east) corresponds to two legs of the right triangle formed with them. (north and east directions are perpendicular each other)
We can calculate the angle that give the direction using the following formula:

Now, substituting the given information we have:


Hence, we have that <u>the direction of motion</u> of the person relative to the water is 16.7° north of east.
Have a nice day!
Time = distance / speed
T = 125/ 5
T = 25 meters per second
The RDS-220 <span>hydrogen bomb, soviet </span>