<h2>
Answer: 56.718 min</h2>
Explanation:
According to the Third Kepler’s Law of Planetary motion<em> </em><em>“The square of the orbital period of a planet is proportional to the cube of the semi-major axis (size) of its orbit”.
</em>
In other words, this law states a relation between the orbital period
of a body (moon, planet, satellite) orbiting a greater body in space with the size
of its orbit.
This Law is originally expressed as follows:
(1)
Where;
is the Gravitational Constant and its value is
is the mass of Mars
is the semimajor axis of the orbit the spacecraft describes around Mars (assuming it is a <u>circular orbit </u>and a <u>low orbit near the surface </u>as well, the semimajor axis is equal to the radius of the orbit)
If we want to find the period, we have to express equation (1) as written below and substitute all the values:
(2)
(3)
(4)
Finally:
This is the orbital period of a spacecraft in a low orbit near the surface of mars
The main difference is the source of the sediment that the rock is formed from. Clastic sedimentary rocks are formed mostly from silicate sediment derived by the breakdown of pre-existing rocks. Bioclastic rocks are formed by the accumulation of fragmented organic remains (such as shell-sand) - i.e. the sediment is of biological rather than non-biological origin.
Water equal to iron is greater than cooper
Some examples of constant velocity (or at least almost- constant velocity) motion include (among many others): • A car traveling at constant speed without changing direction. A hockey puck sliding across ice. A space probe that is drifting through interstellar space.