1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Korolek [52]
3 years ago
13

Please help! show work if you can

Mathematics
1 answer:
MA_775_DIABLO [31]3 years ago
8 0

Answer:

C

Step-by-step explanation:

i did test please comment if its wrong

You might be interested in
Please help me with this question thank you
gulaghasi [49]

Answer:

\mathrm{The\:solution\:is} :

x=\frac{-y^2-1}{2-y^2}\space\left\{y\ge \:0\right\}

Step-by-step explanation:

Given

y=\sqrt{\frac{2x+1}{x-1}}

Taking square of both sides

y^2=\left(\sqrt{\frac{2x+1}{x-1}}\right)\:^2

\mathrm{Subtract\:}\left(\sqrt{\frac{2x+1}{x-1}}\right)^2\mathrm{\:from\:both\:sides}

y^2-\left(\sqrt{\frac{2x+1}{x-1}}\right)^2=\left(\sqrt{\frac{2x+1}{x-1}}\right)^2-\left(\sqrt{\frac{2x+1}{x-1}}\right)^2

\mathrm{Simplify}

y^2-\left(\sqrt{\frac{2x+1}{x-1}}\right)^2=0

As we know that \mathrm{Apply\:Difference\:of\:Two\:Squares\:Formula:\:}x^2-y^2=\left(x+y\right)\left(x-y\right)

\mathrm{Factor\:}y^2-\left(\sqrt{\frac{2x+1}{x-1}}\right)^2:\quad \left(y+\sqrt{\frac{2x+1}{x-1}}\right)\left(y-\sqrt{\frac{2x+1}{x-1}}\right)

so

\left(y+\sqrt{\frac{2x+1}{x-1}}\right)\left(y-\sqrt{\frac{2x+1}{x-1}}\right)=0        

\mathrm{Using\:the\:Zero\:Factor\:Principle:\quad \:If}\:ab=0\:\mathrm{then}\:a=0\:\mathrm{or}\:b=0\:\left(\mathrm{or\:both}\:a=0\:\mathrm{and}\:b=0\right)

\mathrm{Solve\:}\:y+\sqrt{\frac{2x+1}{x-1}}=0

\mathrm{Subtract\:}y\mathrm{\:from\:both\:sides}

y+\sqrt{\frac{2x+1}{x-1}}-y=0-y

\sqrt{\frac{2x+1}{x-1}}=-y

\mathrm{Square\:both\:sides}

\left(\sqrt{\frac{2x+1}{x-1}}\right)^2=\left(-y\right)^2

\mathrm{Expand\:}\left(\sqrt{\frac{2x+1}{x-1}}\right)^2

\left(\sqrt{\frac{2x+1}{x-1}}\right)^2

\mathrm{Apply\:radical\:rule}:\quad \sqrt{a}=a^{\frac{1}{2}}

=\left(\left(\frac{2x+1}{x-1}\right)^{\frac{1}{2}}\right)^2

=\frac{2x+1}{x-1}

so equation  \left(\sqrt{\frac{2x+1}{x-1}}\right)^2=\left(-y\right)^2 becomes

\frac{2x+1}{x-1}=y^2

now

\mathrm{Solve\:}\:\frac{2x+1}{x-1}=y^2

\frac{2x+1}{x-1}=y^2

\mathrm{Multiply\:both\:sides\:by\:}x-1

\frac{2x+1}{x-1}\left(x-1\right)=y^2\left(x-1\right)

2x+1=y^2\left(x-1\right)

2x+1=xy^2-y^2         ∵  y^2\left(x-1\right):\quad xy^2-y^2

2x=xy^2-y^2-1

2x-xy^2=-y^2-1

x\left(2-y^2\right)=-y^2-1         ∵ \mathrm{Factor}\:2x-xy^2:\quad x\left(2-y^2\right)

\mathrm{Divide\:both\:sides\:by\:}2-y^2

\frac{x\left(2-y^2\right)}{2-y^2}=-\frac{y^2}{2-y^2}-\frac{1}{2-y^2}

x=\frac{-y^2-1}{2-y^2}

so

y+\sqrt{\frac{2x+1}{x-1}}=0:\quad x=\frac{-y^2-1}{2-y^2}\space\left\{y\le \:0\right\}

similarly

y-\sqrt{\frac{2x+1}{x-1}}=0:\quad x=\frac{-y^2-1}{2-y^2}\space\left\{y\ge \:0\right\}

\mathrm{Verify\:Solutions}:\quad x=\frac{-y^2-1}{2-y^2}

\mathrm{Check\:the\:solutions\:by\:plugging\:them\:into\:}y^2=\left(\sqrt{\frac{2x+1}{x-1}}\right)^2

\mathrm{Remove\:the\:ones\:that\:don't\:agree\:with\:the\:equation.}

\mathrm{Plug}\quad x=\frac{-y^2-1}{2-y^2}

y^2=\left(\sqrt{\frac{2\left(\frac{-y^2-1}{2-y^2}\right)+1}{\left(\frac{-y^2-1}{2-y^2}\right)-1}}\right)^2

\mathrm{Subtract\:}\left(\sqrt{\frac{2\frac{-y^2-1}{2-y^2}+1}{\frac{-y^2-1}{2-y^2}-1}}\right)^2\mathrm{\:from\:both\:sides}

y^2-\left(\sqrt{\frac{2\cdot \frac{-y^2-1}{2-y^2}+1}{\frac{-y^2-1}{2-y^2}-1}}\right)^2=\left(\sqrt{\frac{2\cdot \frac{-y^2-1}{2-y^2}+1}{\frac{-y^2-1}{2-y^2}-1}}\right)^2-\left(\sqrt{\frac{2\cdot \frac{-y^2-1}{2-y^2}+1}{\frac{-y^2-1}{2-y^2}-1}}\right)^2

y^2-\left(\sqrt{\frac{2\cdot \frac{-y^2-1}{2-y^2}+1}{\frac{-y^2-1}{2-y^2}-1}}\right)^2=0

\mathrm{Factor\:}y^2-\left(\sqrt{\frac{2\frac{-y^2-1}{2-y^2}+1}{\frac{-y^2-1}{2-y^2}-1}}\right)^2:\quad \left(y+\sqrt{\frac{2\cdot \frac{-y^2-1}{2-y^2}+1}{\frac{-y^2-1}{2-y^2}-1}}\right)\left(y-\sqrt{\frac{2\cdot \frac{-y^2-1}{2-y^2}+1}{\frac{-y^2-1}{2-y^2}-1}}\right)

so

\left(y+\sqrt{\frac{2\cdot \frac{-y^2-1}{2-y^2}+1}{\frac{-y^2-1}{2-y^2}-1}}\right)\left(y-\sqrt{\frac{2\cdot \frac{-y^2-1}{2-y^2}+1}{\frac{-y^2-1}{2-y^2}-1}}\right)=0

\mathrm{Using\:the\:Zero\:Factor\:Principle:\quad \:If}\:ab=0\:\mathrm{then}\:a=0\:\mathrm{or}\:b=0\:\left(\mathrm{or\:both}\:a=0\:\mathrm{and}\:b=0\right)

\mathrm{Solve\:}\:y+\sqrt{\frac{2\cdot \frac{-y^2-1}{2-y^2}+1}{\frac{-y^2-1}{2-y^2}-1}}=0:\quad y\le \:0

\mathrm{Solve\:}\:y-\sqrt{\frac{2\cdot \frac{-y^2-1}{2-y^2}+1}{\frac{-y^2-1}{2-y^2}-1}}=0:\quad y\ge \:0

\mathrm{True\:for\:all}\:y

Therefore,  \mathrm{The\:solution\:is} :

x=\frac{-y^2-1}{2-y^2}\space\left\{y\ge \:0\right\}

6 0
3 years ago
2 is what percent of 10
kolezko [41]

Answer:

2 is 20% of 10

Step-by-step explanation:

hope this helps

pls rate brainliest

4 0
2 years ago
given three points of a quadratic function find the equation that defines the function (-2,20)(0,-2)(1,-4) hurry please!!​
kotykmax [81]

Answer:

D: y = 3x² - 5x - 2

Step-by-step explanation:

The general form of a quadratic equation is: y = ax² + bx + c    

c is the y-intercept

We are given the point (0, -2) which is the y-intercept, so we can rewrite our general form into

y = ax² + bx - 2

We can create a system of equations to solve for a and b.  We are given two points.  

Equation 1:  Take the first point (-2, 20) and plug it into our general equation...

20 = a(-2)² + b(-2) - 2

   20 = 4a - 2b - 2

        22 = 4a - 2b         (add 2 to both sides)

           11 = 2a - b         (divide both sides by 2 since every coefficient is even)

Equation 2:   Take the point (1, -4) and plug it into the general equation

-4 = a(1)² + b(1) - 2

  -4 = a + b - 2

     -2 = a + b

Now we have our 2 equations:

11 = 2a - b

-2 = a + b

Since the coefficients of b are already have opposite signs, add the two equations together (elimination method)

Now we have

9 = 3a       now solve for a...

 3 = a   (divide by 3 on both sides)

If a = 3, then

-2 = 3 + b

    -5 = b

Our equation is

y = 3x² - 5x - 2

6 0
3 years ago
Find the y-coordinate of the y-intercept of the polynomial function defined
Bas_tet [7]
The y intercept is where the function passes through the y axis, so the “x” value needs to equal 0. We sub 0 in for “x” and solve for “y”.

f(0) = 9(0)^2 - 7 - 8(0)

f(0) = -7

Therefore the “y” coordinate would be -7

The ordered pair would be

(0, -7)
6 0
3 years ago
An animal shelter spends $2.35 per day to care for each cat and $5.50 per day to care for each
lora16 [44]
Equation:
89.50=2.35c+5.50d

If theres 22 dogs and cats in total you can plug in number less than 22 for c(# of cats) and d(# of dogs).

So we try pats numbers 8 cats and 14 dogs so

89.50=2.35(8)+5.50(14)

89.50=18.8+77

89.50=95.8

So pats numbers were wrong so we try different numbers

So i started pluging in numbers from under 22 so i got c is 10 and d is 12 lets try it with the equation

89.50=2.35(10)+5.50(12)

89.50=23.5+66

89.50=89.50 so it works the answer to how many number of dogs and cats is 12 dogs and 10 cats




6 0
3 years ago
Other questions:
  • Auto pistons at Wemming​ Chung's plant in Shanghai are produced in a forging​ process, and the diameter is a critical factor tha
    14·1 answer
  • Is -0.11 a natural number?
    9·2 answers
  • What is the probability that X is between 11 and 71?
    11·1 answer
  • A drawer contains 22 black socks and 22 white socks. If the light is off and Matt reaches into the drawer to get his​ socks, wha
    6·1 answer
  • Help me with the work please if you can
    14·1 answer
  • Write a division equation and a multiplication equation to represent the problem.
    8·2 answers
  • Five friends attend a matinee movie and spend $8 per ticket. They also purchase a small bag of popcorn each. The friends spend a
    15·1 answer
  • Will give Brainiest if you are right
    10·1 answer
  • Three eighths of the 32 children in the club were girls. <br> How many boys were in the club?
    5·2 answers
  • 22. If Olivia solves every sixth math problem and Nora
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!