Answer: the probability that exactly two of the next five people who apply to that university get accepted is 0.23
Step-by-step explanation:
We would number of people that applies for admission at the university and gets accepted. The formula is expressed as
P(x = r) = nCr × p^r × q^(n - r)
Where
x represent the number of successes.
p represents the probability of success.
q = (1 - p) represents the probability of failure.
n represents the number of trials or sample.
From the information given,
p = 0.6
q = 1 - p = 1 - 0.6
q = 0.4
n = 5
the probability that exactly two of the next five people who apply to that university get accepted is
P(x = 2) = 5C2 × 0.6^2 × 0.4^(5 - 2)
P(x = 2) = 10 × 0.36 × 0.064
P(x = 2) = 0.23
Answer:
r = 2.23
Step-by-step explanation:
Use the formula:
C = 2(pi)r
Solve for r:
r = C
/2π = 14
/2·π = 2.228
Answer:
x = 7
Step-by-step explanation:
first subtract 4 from both sides
-3x = -21
divide both sides by negative 3
x = 7
<span>When you round 699,900 to the nearest hundred, you get 700,00.</span>
D = sq.root of((x2 - x1)^2 + (y2 - y1)^2)
sq.root of 13 = sq.root of((x - (-2))^2 + (1 - 3)^2)
= sq.root of((x + 2)^2 + (-2)^2)
= sq.root of (x^2 + 4x + 4 + 4)
= sq.root of (x^2 + 4x + 8)
Now if we square both sides:
x^2 + 4x + 8 = 13
x^2 + 4x - 5 = 0
(x + 5)(x - 1) = 0
x = -5 or x = 1