1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Inessa05 [86]
2 years ago
12

Can u answer these for me with the work shown

Mathematics
1 answer:
babymother [125]2 years ago
8 0

Answer:

\frac{x^3 + 2x^2 -9x-18}{x^3-x^2-6x}= \frac{(x+3)}{x}

\frac{3x^2 - 5x - 2}{x^3 - 2x^2} = \frac{3x + 1}{x^2}

\frac{6 - 2x}{x^2 - 9} * \frac{15 + 5x}{4x}=-\frac{5}{2x}

\frac{x^2 -6x + 9}{5x - 15} / \frac{5}{3-x} = \frac{-(x-3)^2}{25}

\frac{x^3 - x^2 -x + 1}{x^2 - 2x+1}= x +1

\frac{9x^2 + 3x}{6x^2} = \frac{3x + 1}{2x}

\frac{x^2-3x+2}{4x} * \frac{12x^2}{x^2 - 2x} / \frac{x - 1}{x} = 3x

Step-by-step explanation:

Required

Simplify

Solving (1):

\frac{x^3 + 2x^2 -9x-18}{x^3-x^2-6x}

Factorize the numerator and the denominator

\frac{x^2(x + 2) -9(x+2)}{x(x^2-x-6)}

Factor out x+2 at the numerator

\frac{(x^2 -9)(x+2)}{x(x^2-x-6)}

Express x^2 - 9 as difference of two squares

\frac{(x^2 -3^2)(x+2)}{x(x^2-x-6)}

\frac{(x -3)(x+3)(x+2)}{x(x^2-x-6)}

Expand the denominator

\frac{(x -3)(x+3)(x+2)}{x(x^2-3x+2x-6)}

Factorize

\frac{(x -3)(x+3)(x+2)}{x(x(x-3)+2(x-3))}

\frac{(x -3)(x+3)(x+2)}{x(x+2)(x-3)}

Cancel out same factors

\frac{(x+3)}{x}

Hence:

\frac{x^3 + 2x^2 -9x-18}{x^3-x^2-6x}= \frac{(x+3)}{x}

Solving (2):

\frac{3x^2 - 5x - 2}{x^3 - 2x^2}

Expand the numerator and factorize the denominator

\frac{3x^2 - 6x + x - 2}{x^2(x- 2)}

Factorize the numerator

\frac{3x(x - 2) + 1(x - 2)}{x^2(x- 2)}

Factor out x - 2

\frac{(3x + 1)(x - 2)}{x^2(x- 2)}

Cancel out x - 2

\frac{3x + 1}{x^2}

Hence:

\frac{3x^2 - 5x - 2}{x^3 - 2x^2} = \frac{3x + 1}{x^2}

Solving (3):

\frac{6 - 2x}{x^2 - 9} * \frac{15 + 5x}{4x}

Express x^2 - 9 as difference of two squares

\frac{6 - 2x}{x^2 - 3^2} * \frac{15 + 5x}{4x}

Factorize all:

\frac{2(3 - x)}{(x- 3)(x+3)} * \frac{5(3 + x)}{2(2x)}

Cancel out x + 3 and 3 + x

\frac{2(3 - x)}{(x- 3)} * \frac{5}{2(2x)}

\frac{3 - x}{x- 3} * \frac{5}{2x}

Express 3 - x as -(x - 3)

\frac{-(x-3)}{x- 3} * \frac{5}{2x}\\

-1 * \frac{5}{2x}

-\frac{5}{2x}

Hence:

\frac{6 - 2x}{x^2 - 9} * \frac{15 + 5x}{4x}=-\frac{5}{2x}

Solving (4):

\frac{x^2 -6x + 9}{5x - 15} / \frac{5}{3-x}

Expand x^2 - 6x + 9 and factorize 5x - 15

\frac{x^2 -3x -3x+ 9}{5(x - 3)} / \frac{5}{3-x}

Factorize

\frac{x(x -3) -3(x-3)}{5(x - 3)} / \frac{5}{3-x}

\frac{(x -3)(x-3)}{5(x - 3)} / \frac{5}{3-x}

Cancel out x - 3

\frac{(x -3)}{5} / \frac{5}{3-x}

Change / to *

\frac{(x -3)}{5} * \frac{3-x}{5}

Express 3 - x as -(x - 3)

\frac{(x -3)}{5} * \frac{-(x-3)}{5}

\frac{-(x-3)(x -3)}{5*5}

\frac{-(x-3)^2}{25}

Hence:

\frac{x^2 -6x + 9}{5x - 15} / \frac{5}{3-x} = \frac{-(x-3)^2}{25}

Solving (5):

\frac{x^3 - x^2 -x + 1}{x^2 - 2x+1}

Factorize the numerator and expand the denominator

\frac{x^2(x - 1) -1(x - 1)}{x^2 - x-x+1}

Factor out x - 1 at the numerator and factorize the denominator

\frac{(x^2 - 1)(x - 1)}{x(x -1)- 1(x-1)}

Express x^2 - 1 as difference of two squares and factor out x - 1 at the denominator

\frac{(x +1)(x-1)(x - 1)}{(x -1)(x-1)}

x +1

Hence:

\frac{x^3 - x^2 -x + 1}{x^2 - 2x+1}= x +1

Solving (6):

\frac{9x^2 + 3x}{6x^2}

Factorize:

\frac{3x(3x + 1)}{3x(2x)}

Divide by 3x

\frac{3x + 1}{2x}

Hence:

\frac{9x^2 + 3x}{6x^2} = \frac{3x + 1}{2x}

Solving (7):

\frac{x^2-3x+2}{4x} * \frac{12x^2}{x^2 - 2x} / \frac{x - 1}{x}

Change / to *

\frac{x^2-3x+2}{4x} * \frac{12x^2}{x^2 - 2x} * \frac{x}{x-1}

Expand

\frac{x^2-2x-x+2}{4x} * \frac{12x^2}{x^2 - 2x} * \frac{x}{x-1}

Factorize

\frac{x(x-2)-1(x-2)}{4x} * \frac{12x^2}{x(x - 2)} * \frac{x}{x-1}

\frac{(x-1)(x-2)}{4x} * \frac{12x^2}{x(x - 2)} * \frac{x}{x-1}

Cancel out x - 2 and x - 1

\frac{1}{4x} * \frac{12x^2}{x} * \frac{x}{1}

Cancel out x

\frac{1}{4x} * \frac{12x^2}{1} * \frac{1}{1}

\frac{12x^2}{4x}

3x

Hence:

\frac{x^2-3x+2}{4x} * \frac{12x^2}{x^2 - 2x} / \frac{x - 1}{x} = 3x

You might be interested in
PLS PLS PLS PLS HELP ITS EASY111 BRAINLIEST POINTS
shusha [124]

Answer:

I think it's A

Step-by-step explanation:

6 0
2 years ago
1. What is the value of x? Show all of your work.
Colt1911 [192]
You can use the pathagorean theorm.
a^2 + b^2 = c^2
a^2 + 6^2 = \sqrt{117}^2
a^2 + 36 = 117
a^2 = 117 - 36
a^2 = 81
\sqrt{a^2} = \sqrt{81}
a = 9
x = 9
5 0
3 years ago
Can someone answer this question please?
Leni [432]

Answer:

b\leq-28/9

Step-by-step explanation:

5+9b\leq-23

5+9b=-23

9b=-28

b=-28/9

4 0
3 years ago
Which expression is equivalent to 24 ⋅ 2−7? 1 over 2 to the power of 11 1 over 2 to the power of 3 23 211
lawyer [7]
I over 2 to the power 11
5 0
3 years ago
Read 2 more answers
Patty has 8 flowerpots, and she wants to plant a different type of flower in each pot. There are 11 types of flower available at
Dominik [7]
The combination formula is given by

C(n, r) = \frac{n!}{(n-r)!r!}

C(11, 8) = \frac{11!}{(11-8)!8!}

C(11, 8) = 165

So, there are 165 ways of choosing 8 flowers out of 11 flowers
7 0
3 years ago
Other questions:
  • When two six-sided dice are rolled what is the probability that the product of their scores will be greater than six?
    7·2 answers
  • Help me plzzzzzzzzzzzzzzz
    6·2 answers
  • Whats y-1/2 when y =5/6 plsss tell meeee
    15·1 answer
  • Someone help I don't know how to solve this <br> m(x)=−x(x−4)
    7·1 answer
  • If bricks weight 4.5 pounds each how many pounds will 200 bricks weight
    11·1 answer
  • HELP ME PLEASE!!!!!!!!!! QUESTION IS ABOVE. ONLY 1 QUESTION
    5·2 answers
  • Position vectors u and v have terminal points of (-6, 3) and (4, -2), respectively. Find the resulting terminal point of 2v - u.
    11·2 answers
  • Doc decides to buy the entire 6th grade a slice of pizza.
    5·2 answers
  • Find x: a - bx = cx + d
    10·1 answer
  • What is the number nearest to 10000 which is exactly divisible by 3, 4, 5, 6, 7, and 8?.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!