Answer:
P(X= k) = (1-p)^k-1.p
Step-by-step explanation:
Given that the number of trials is
N < = k, the geometric distribution gives the probability that there are k-1 trials that result in failure(F) before the success(S) at the kth trials.
Given p = success,
1 - p = failure
Hence the distribution is described as: Pr ( FFFF.....FS)
Pr(X= k) = (1-p)(1-p)(1-p)....(1-p)p
Pr((X=k) = (1 - p)^ (k-1) .p
Since N<=k
Pr (X =k) = p(1-p)^k-1, k= 1,2,...k
0, elsewhere
If the probability is defined for Y, the number of failure before a success
Pr (Y= k) = p(1-p)^y......k= 0,1,2,3
0, elsewhere.
Given p= 0.2, k= 3,
P(X= 3) =( 0.2) × (1 - 0.2)²
P(X=3) = 0.128
When the lines are parallel and angles are given, and since a straight line is 180°, the 2 angles of the line intersecting the parallel lines have to add up to be 180. Therefore,
21. 31°
22. 96°
23. 149°
24. 84°
25. 53°
Did u get the answer please help me i am taking the test right now?!

Keep in mind: The entire line segment (VX) is equal to 14.

Let's see how the line segment looks like first.
Line segment VX is 14 units long.
14
______________
V X
W is on the line segment somewhere, and VW is equal to 3.
3 ?
______________
V W X

We have to solve for the <em>?.</em> Let's put ? as x. So now we are solving for x.
We have to set up our equation like this:
x + 3 = 14
Since our unknown value plus 3 is equal to 14, we have to subtract 3 from 14 to get our answer.
14 - 3 = 11
3 11
______________
V W X

Answer:
Step-by-step explanation:
Given the expression cosec (x) = 4 and tan(x)< 0
since cosec x = 1/sinx
1/sinx = 4
sinx = 1/4
From SOH, CAH TOA
sinθ = opposite/hypotenuse
from sinx = 1/4
opposite = 1 and hypotenuse = 4
to get the adjacent, we will use the Pythagoras theorem
adj² = 4²-1²
adj² = 16-1
adj ²= 15
adj = √15
cosx = adj/hyp = √15/4
tanx = opposite/adjacent = 1/√15
since tan < 0, then tanx = -1/√15
From double angle formula;
sin2x = 2sinxcosx
sin2x = 2(1/4)(√15/4)
sin2x = 2√15/16
sin2x = √15/8
for cos2x;
cos2x = 1-2sin²x
cos2x = 1-2(1/4)²
cos2x = 1-2(1/16)
cos2x= 1-1/8
cos2x = 7/8
for tan2x;
tan2x = tanx + tanx/1-tan²x
tan2x = 2tanx/1-tan²x
tan2x = 2(-1/√15)/1-(-1/√15)²
tan2x = (-2/√15)/(1-1/15)
tan2x = (-2/√15)/(14/15)
tan2x = -2/√15 * 15/14
tan2x = -30/14√15
tan2x = -30/7√15
rationalize
tan2x = -30/7√15 * √15/√15
tan2x = -30√15/7*15
tan2x = -2√15/7