Answer:
domain: x>3/5
Step-by-step explanation:
First we need to derive our function g(x) to get a new function g'(x)
To do this we will have to apply chain rule because we have an inner and outer functions.
Our G(x) = square root(3-5x)
Chain rule formula states that: d/dx(g(f(x)) = g'(f(x))f'(x)
where d/dx(g(f(x)) = g'(x)
g(x) is the outer function which is x^1/2
f(x) is our inner function which is 3-5x
therefore f'(x)= 1/2x^(-1/2) and f'(x) = -5
g'(f(x)) = -1/2(3-5x)^(-1/2)
Applying chain rule then g'(x) = 1/2 (3-5x)^(-/1/2)*(-5)
But the domain is the values of x where the function g'(x) is not defined
In this case it will be 3-5x > 0, because 3-5x is a denominator and anything divide by zero is infinity/undefined
which gives us x >3/5
for mean you add every number and divide it by the amount of numbers in the data set
for median you put the numbers in order and find the middle number, if there is no middle get the mean for the two middle numbers
range is basically the lowest and highest number
75%.
3/4 is .75. Drag the decimal to the right two times and it is 75%.
Note: When I use the double equal sign, I mean the triple bar used with modular arithmetic
10^3 = 1000 == -1 (mod 1001)
10^3 == -1 (mod 1001)
(10^3)^672 == (-1)^672 (mod 1001)
(10^(3*672) == 1 (mod 1001)
10^2016 == 1 (mod 1001)
10*10^2016 == 10*1 (mod 1001)
10^2017 == 10 (mod 1001)
Final Answer: 10
2+2=4
a^2+b^2=c^2
15^2-4^2
=225-16
=209