Answer:
A(2, -3) and B(3, -2), o(0, 0) Let C(x, y)
Here c divide AB line in the ratio of 1:2
From the line intersection law, we get x=(m1×x2+m2×x1)/(m1+m2)
and y=(m1×y2+m2×y1)/(m1+m2)
where m1=1, m2=2, x1=2, x2=3, y1=-3, y2=-2;
so x=(3+4)/3
or, x=7/3;
y=(-2-6)/3
or, y=-8/3;
so, oc=√((0-7/3)²+(0-(-8/3))²)
oc=3.54
2D-a^2=2
2(a√2) -a^2=2
a^2-2√2*a+2=0
2a= 2√2 + √(8-4*2) = 2√2
hence, perimeter = 4a = 2*2a=2*2√2 = 4√2