The statements aren't given; however the number of 1/2 and 1/4 - pound package have been calculated below.
Answer:
Step-by-step explanation:
Given :
A 12 pound block :
Number of 1/2 pound packages that can be obtained :
12 ÷ 1/2 ;
12 * 2/1 = 24 (1/2 - Pound package) can be obtained.
Number of 1/4 pound package that can be obtained :
12 ÷ 1/4
12 * 4 /1 = 48 (1/4 - Pound package) can be obtained
We can obtain twice the number of 1/2 - pound package by using the 1/4 - pound slicing.
Answer:

Step-by-step explanation:

Answer:
13
Step-by-step explanation:
count the big ducks first
then go back and count the smaller ones
Answer:






Step-by-step explanation:
Given

See attachment for proper table
Required
Complete the table
Experimental probability is calculated as:

We use the above formula when the frequency is known.
For result of roll 2, 4 and 6
The frequencies are 13, 29 and 6, respectively
So, we have:



When the frequency is to be calculated, we use:


For result of roll 3 and 5
The probabilities are 0.144 and 0.296, respectively
So, we have:


For roll of 1 where the frequency and the probability are not known, we use:

So:
Frequency(1) added to others must equal 125
This gives:


Collect like terms


The probability is then calculated as:


So, the complete table is:






Answer:
The additive inverse of 0 is 0.