First find the value of X from the perimeter given
Perimeter = L*W
90 = 2 ((2x+2) + (x-2))
90 = 4x + 4 +4x - 4
90 = 8x
x = 11.25
Length = 2x + 2
2 (11.25) +2
=24.5
Width = x-2
11.25 -2
=9.25
h =x
= 11.25
Volume = L*W*H
24.5 * 9.25 * 11.25
2549.53 units^3
Answer:
b^2 + 4 a b - 2 b - 2 a^2 + -5 a
Step-by-step explanation:
Simplify the following:
-2 a (a + b - 5) + 3 (2 b - 5 a) + b (6 a + b - 8)
-2 a (-5 + a + b) = 10 a - 2 a^2 - 2 a b:
10 a - 2 a^2 - 2 a b + 3 (2 b - 5 a) + b (6 a + b - 8)
3 (2 b - 5 a) = 6 b - 15 a:
10 a - 2 a^2 - 2 a b + 6 b - 15 a + b (6 a + b - 8)
b (-8 + 6 a + b) = -8 b + 6 a b + b^2:
10 a - 2 a^2 - 2 a b - 15 a + 6 b + -8 b + 6 a b + b^2
Grouping like terms, 10 a - 2 a^2 - 2 a b - 15 a + 6 b - 8 b + 6 a b + b^2 = b^2 + (6 a b - 2 a b) + (6 b - 8 b) - 2 a^2 + (10 a - 15 a):
b^2 + (6 a b - 2 a b) + (6 b - 8 b) - 2 a^2 + (10 a - 15 a)
a b 6 + a b (-2) = 4 a b:
b^2 + 4 a b + (6 b - 8 b) - 2 a^2 + (10 a - 15 a)
6 b - 8 b = -2 b:
b^2 + 4 a b + -2 b - 2 a^2 + (10 a - 15 a)
10 a - 15 a = -5 a:
Answer: b^2 + 4 a b - 2 b - 2 a^2 + -5 a