The difference between the flat fees of the two companies is $20
Answer: 15 1/3 months
Step-by-step explanation:
Daniella has $210 in the bank, and her balance grows at a rate of $3 each month. This can be written as:
b = 3m + 210 ...... equation i
Lori has $187 in the bank and her balance grows at a rate of $4.50 each month. This can be written as:
b = 4.5m + 187 ....... equation ii
Combine both equations
b = 3m + 210
b = 4.5m + 187
3m + 210 = 4.5m + 187
4.5m - 3m = 210 - 187
1.5m = 23
m = 23/1.5
m = 15 1/3 months
Answer: I believe the answer would be about 1
hope this helps
Answer:
its really hard mark me brainly
Step-by-step explanation:
The trapezoidal approximation will be the average of the left- and right-endpoint approximations.
Let's consider a simple example of estimating the value of a general definite integral,

Split up the interval
![[a,b]](https://tex.z-dn.net/?f=%5Ba%2Cb%5D)
into

equal subintervals,
![[x_0,x_1]\cup[x_1,x_2]\cup\cdots\cup[x_{n-2},x_{n-1}]\cup[x_{n-1},x_n]](https://tex.z-dn.net/?f=%5Bx_0%2Cx_1%5D%5Ccup%5Bx_1%2Cx_2%5D%5Ccup%5Ccdots%5Ccup%5Bx_%7Bn-2%7D%2Cx_%7Bn-1%7D%5D%5Ccup%5Bx_%7Bn-1%7D%2Cx_n%5D)
where

and

. Each subinterval has measure (width)

.
Now denote the left- and right-endpoint approximations by

and

, respectively. The left-endpoint approximation consists of rectangles whose heights are determined by the left-endpoints of each subinterval. These are

. Meanwhile, the right-endpoint approximation involves rectangles with heights determined by the right endpoints,

.
So, you have


Now let

denote the trapezoidal approximation. The area of each trapezoidal subdivision is given by the product of each subinterval's width and the average of the heights given by the endpoints of each subinterval. That is,

Factoring out

and regrouping the terms, you have

which is equivalent to

and is the average of

and

.
So the trapezoidal approximation for your problem should be