They are called dry cells because the electrolyte is a paste.
Hope this helps!
Please give Brainliest!
The rate of change of the temperature of the Earth's surface is given to,
90°F/mile
To determine the temperature x miles away from the surface, we multiply the depth by the given rate. This will give us the answer of,
T = (90°F/mile)(90 mile)
= 8100°F
Thus, the temperature 90 miles deep in the Earth's surface is equal to 8100°F.
Hello!
Data:
P (pressure) = 1 atm
V (volume) = 18.5 L
T (temperature) = 300 K
n (number of mols) = ? (in mol)
R (Gas constant) = 0.082 (atm*L/mol*K)
Apply the data to the Clapeyron equation (ideal gas equation), see:






Note:
If the feedback is to be considered, the closest r
esponse is 0.751 mol Nacl
_________________
_________________
I hope this helps. =)
The volume you would expect the gas to occupy if the pressure is increased to 40
The kpa would be 50 liters
Answer:
31.3 g
The answer is higher than the true answer.
Explanation:
By neglecting the heat lost by other processes, the energy conservation states that:
Qcooling + Qevaporate = 0
The cooling process happens without phase change, so the heat can be calculated by:
Qcooling = m*c*ΔT
Where m is the mass, c is the heat capacity (cwater = 4184 J/kg.K), and ΔT is the temperature variation (final - initial).
The evaporate process happen without changing of temperature (pure substance), and the heat can be calculated by:
Qevaporate = m*L
Where m is the mass evaporated and L is the heat of evaporation (2340000 J/kg).
0.350*4184*(45 - 95) + m*2340000 = 0
2340000m = 73220
m = 0.0313 kg
m = 31.3 g
Because of the assumptions made, the real mass is not that was calculated. There'll be changing mass when the coffee is cooling, and there'll be heat loses by other processes because the system is not isolated. Also, the substance is not pure. So, there'll be more factors at the energy equation, thus, the answer is higher than the true answer.