32g of oxygen is required to burn 4g of hydrogen.
Define molecular mass.
A specific molecule's mass is expressed in daltons and is known as the molecular mass (m) (Da or u). Due to the varying isotopes of an element that they contain, multiple molecules of the same substance can have distinct molecular weights.
The total atomic mass of every atom in a molecule, calculated using a scale with hydrogen, carbon, nitrogen, and oxygen having atomic masses of 1, 12, 14, and 16, respectively. For instance, water has a molecular mass of 18 (2 + 16), which consists of two hydrogen atoms and one oxygen atom. known also as molecular weight.
In ,2H2+O2-----> 2H2O
H 2 molecules have a mass of 2 g/mol.
The molecular weight of oxygen is 32 g/mol.
When the chemical equation is balanced,
To totally react, 32 g of oxygen are needed for every 22=4 g of hydrogen.
To know more about molecular mass use link below:
brainly.com/question/21334167
#SPJ1
Answer: (C) Vaporizing
Explanation:
Vaporization is the process in which the substance change the state of of liquid into the gas state.
The vaporization process require the largest input of the energy as when the state is in the solid state then, the solid substances contain the strong forces of the attraction and they require high energy to break these strong bonds.
For changing the liquid state into the gases state we require to overcome the surface tension and require enough energy for acquiring the vaporization state.
Therefore, option (C) is correct.
Answer:
![K_a=\frac{[H_3O^+][HCO_3^-]}{[H_2CO_3]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BH_3O%5E%2B%5D%5BHCO_3%5E-%5D%7D%7B%5BH_2CO_3%5D%7D)
Explanation:
Several rules should be followed to write any equilibrium expression properly. In the context of this problem, we're dealing with an aqueous equilibrium:
- an equilibrium constant is, first of all, a fraction;
- in the numerator of the fraction, we have a product of the concentrations of our products (right-hand side of the equation);
- in the denominator of the fraction, we have a product of the concentrations of our reactants (left-hand side o the equation);
- each concentration should be raised to the power of the coefficient in the balanced chemical equation;
- only aqueous species and gases are included in the equilibrium constant, solids and liquids are omitted.
Following the guidelines, we will omit liquid water and we will include all the other species in the constant. Each coefficient in the balanced equation is '1', so no powers required. Multiply the concentrations of the two products and divide by the concentration of carbonic acid:
![K_a=\frac{[H_3O^+][HCO_3^-]}{[H_2CO_3]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BH_3O%5E%2B%5D%5BHCO_3%5E-%5D%7D%7B%5BH_2CO_3%5D%7D)
Answer:
John Dalton:
John Dalton was the scientist who introduced atomic theory in the field of chemistry. Dalton worked on different gases and formulated this theory. The main points of Dalton's theory are:
- Every element present is made up of atoms.
- Atoms of an elements are have the same same properties whereas these properties are different for each element.
- According to his theory, an atom could not be broken down.
- Different atoms combine or get separated from each other during a chemical reaction.
Ernest Rutherford:
Ernest Rutherford is known as the father of nuclear physics due to his impressing research work on radioactivity of atoms. Rutherford was the first scientist to discover the nucleus of an atom and prove that the nucleus was charged. He also described that the electrons circle around the nucleus of an atom.