Given,
CP of cosmetics = Rs 360 per dozen
SP of a pair of cosmetics = Rs 80
To find,
The gain percent
Solution,
1 dozen = 12 items
CP of 1 cosmetic = 360/12 = Rs 30
SP of 1 cosmetic = 80/2 = Rs 40
Profit = SP-CP
= Rs 40 - Rs 30
= Rs 10
Profit percentage is given by :

So, the profit percentage is 33.34%.
Independent variable (IV): something the scientist can change.
Thus, in this case, the IV can be the weight of the person.
Answer:
OPTION A: 2x + 3y = 5
Step-by-step explanation:
The product of slopes of two perpendicular lines is -1.
We rewrite the given equation as follows:
2y = 3x + 2
⇒ y = 
The general equation of the line is: y = mx + c, where 'm' is the slope of the line.
Here, m =
.
Therefore, the slope of the line perpendicular to the line given =
because
.
To determine the equation of the line passing through the given point and a slope we use the Slope - One - point formula which is:
y - y₁ = m(x - x₁)
The point is: (x₁, y₁) = (-2, 3)
Therefore, the equation is:
y - 3 =
(x + 2) $
⇒ 3y - 9 = -2(x + 2)
⇒ 3y - 9 = -2x - 4
⇒ 2x + 3y = 5 is the required equation.
Answer:
Value of Cos 120 is -½.
Step-by-step explanation:
Answer:
∫((cos(x)*dx)/(√(1+sin(x)))) = 2√(1 + sin(x)) + c.
Step-by-step explanation:
In order to solve this question, it is important to notice that the derivative of the expression (1 + sin(x)) is present in the numerator, which is cos(x). This means that the question can be solved using the u-substitution method.
Let u = 1 + sin(x).
This means du/dx = cos(x). This implies dx = du/cos(x).
Substitute u = 1 + sin(x) and dx = du/cos(x) in the integral.
∫((cos(x)*dx)/(√(1+sin(x)))) = ∫((cos(x)*du)/(cos(x)*√(u))) = ∫((du)/(√(u)))
= ∫(u^(-1/2) * du). Integrating:
(u^(-1/2+1))/(-1/2+1) + c = (u^(1/2))/(1/2) + c = 2u^(1/2) + c = 2√u + c.
Put u = 1 + sin(x). Therefore, 2√(1 + sin(x)) + c. Therefore:
∫((cos(x)*dx)/(√(1+sin(x)))) = 2√(1 + sin(x)) + c!!!