1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anastaziya [24]
3 years ago
14

In a class of 6, there are 2 students who forgot their lunch.

Mathematics
1 answer:
lukranit [14]3 years ago
4 0

Answer:

1/8

Step-by-step explanation:

AB,AA,BB,BB,BB,BB,BB,BB,

*A IS THE students that forgot thier lunch

You might be interested in
An unknown number w is 30 more than an unknown number p. The number w is also p less than 5. The equations to find p and w are s
puteri [66]

The given equations are

w = p+30 \\ w = -p+5

TO solve for p and w, we can use elimination method. And the first step is to eliminate p by adding both equations .

So out of the given options, correct option is the first option .

7 0
3 years ago
Read 2 more answers
Y=|x| (What is the range of this function?)
olasank [31]

Answer:

Any number both positive or negative.

y = {all numbers}

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
72 is 75 percent of what number
aniked [119]
Its ans will become 96
3 0
3 years ago
Read 2 more answers
Find <br><img src="https://tex.z-dn.net/?f=%20%5Cfrac%7Bdy%7D%7Bdx%7D%20" id="TexFormula1" title=" \frac{dy}{dx} " alt=" \frac{d
nataly862011 [7]

Answer:

\displaystyle y' = 2x + 3\sqrt{x} + 1

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Terms/Coefficients
  • Anything to the 0th power is 1
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}<u> </u>

<u>Calculus</u>

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

<em />\displaystyle y = (x + \sqrt{x})^2<em />

<em />

<u>Step 2: Differentiate</u>

  1. Chain Rule:                                                                                                        \displaystyle y' = 2(x + \sqrt{x})^{2 - 1} \cdot \frac{d}{dx}[x + \sqrt{x}]
  2. Rewrite [Exponential Rule - Root Rewrite]:                                                     \displaystyle y' = 2(x + x^{\frac{1}{2}})^{2 - 1} \cdot \frac{d}{dx}[x + x^{\frac{1}{2}}]
  3. Simplify:                                                                                                             \displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot \frac{d}{dx}[x + x^{\frac{1}{2}}]
  4. Basic Power Rule:                                                                                             \displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot (1 \cdot x^{1 - 1} + \frac{1}{2}x^{\frac{1}{2} - 1})
  5. Simplify:                                                                                                             \displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot (1 + \frac{1}{2}x^{-\frac{1}{2}})
  6. Rewrite [Exponential Rule - Rewrite]:                                                              \displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot (1 + \frac{1}{2x^{\frac{1}{2}}})
  7. Multiply:                                                                                                             \displaystyle y' = 2[(x + x^{\frac{1}{2}}) + \frac{x + x^{\frac{1}{2}}}{2x^{\frac{1}{2}}}]
  8. [Brackets] Add:                                                                                                 \displaystyle y' = 2(\frac{2x + 3x^{\frac{1}{2}} + 1}{2})
  9. Multiply:                                                                                                             \displaystyle y' = 2x + 3x^{\frac{1}{2}} + 1
  10. Rewrite [Exponential Rule - Root Rewrite]:                                                     \displaystyle y' = 2x + 3\sqrt{x} + 1

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

4 0
3 years ago
7 1/3 or 6 2/3 pls help
Amanda [17]

Answer:

7 3/3

Step-by-step explanation:

+3221654236583217089

4 0
2 years ago
Other questions:
  • When two lines intersect to form a 90 degree angle, these lines are called ________ lines?
    12·2 answers
  • Emanuel has 745 pictures in his phone.His memory is getting full so he starts deleting 20 pictures every day.Define each variabl
    13·2 answers
  • a quilt is made up of 400 squares. each section is 16 squares long and 4 squares wide. there are 4 sections that are made of dot
    6·1 answer
  • | x − 3 | &gt; 7 solve inequality
    9·2 answers
  • What are all of the rational zeros of the function g(x) = x^4- x^3+ 4x^2- 4x?
    7·1 answer
  • Simplify<br><br> 1/4 (-12+4/3)
    10·1 answer
  • Suppose a man offered to work for 30 days at the following salary: one cent for the first day two cents for the second day four
    7·1 answer
  • What are the fourth roots of -3+3√3i?
    6·1 answer
  • (3x^5 + x^3 - 4) divided by (x - 2)​
    10·1 answer
  • A stack of 200 pennies is 1.325 inches tall. Mario guesses that each penny is 0.013 inches thick. Explain how you know Mario’s a
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!