Answer:
Tom is incorrect
Step-by-step explanation:
The odds of getting any number on a 6-sided die are
Every time he rolls, there is a chance he gets any number. Therefore, it is totally plausible to get the same number again. As the number of rolls tends toward infinity, the ratio of each number occurring to number of rolls equals .
Answer:
Median: 55
First quartile: 26.5
Third quartile: 93
Interquartile range: 66.5
Notice that
(1 + <em>x</em>)(1 + <em>y</em>) = 1 + <em>x</em> + <em>y</em> + <em>x y</em>
So we can add 1 to both sides of both equations, and we use the property above to get
<em>a</em> + <em>b</em> + <em>a b</em> = 76 ==> (1 + <em>a</em>)(1 + <em>b</em>) = 77
and
<em>c</em> + <em>d</em> + <em>c d</em> = 54 ==> (1 + <em>c</em>)(1 + <em>d</em>) = 55
Now, 77 = 7*11 and 55 = 5*11, so we get
<em>a</em> + 1 = 7 ==> <em>a</em> = 6
<em>b</em> + 1 = 11 ==> <em>b</em> = 10
(or the other way around, since the given relations are symmetric)
and
<em>c</em> + 1 = 5 ==> <em>c</em> = 4
<em>d</em> + 1 = 11 ==> <em>d</em> = 10
Now substitute these values into the desired quantity:
(<em>a</em> + <em>b</em> + <em>c</em> + <em>d</em>) <em>a</em> <em>b</em> <em>c</em> <em>d</em> = 72,000