Answer:
x = 16
16 - 13 = 3
***brainliest please
Step-by-step explanation:
BD = 2x-4
But it's also BE - CE + CD
BE is 3x-1
CE is 2x-3
CD is 2
so
BD = 3x-1 -(2x-3) +2
simplified
BD = 1x +4
since BD = BD (obviously), we can also say that the righthand sides of the two equation must be equal
2x -4 = 1x +4
let's solve for x and that put it into either of the 2 equations.
2x -4 = 1x +4
subtract 1x on both sides
x -4 = 4
add 4 on both sides
x = 8
substitute x for its value in 2x -4 = 1x +4
(this way we double check BD in two expressions at once. the equation should come out true, meaning same value for BD in each expression. both sides should be equal).
2*8 -4 = 1*8 +4
12 = 12
seems true
BD is safely 12
Answer:Answer:

Step-by-step explanation:
Given the sequence -4,-6,-8..., in order to get sigma notation to represent the sum of the first seven terms of the sequence, we need to first calculate the sum of the first seven terms of the sequence as shown;
The sum of an arithmetic series is expressed as ![S_n = \frac{n}{2}[2a+(n-1)d]](https://tex.z-dn.net/?f=S_n%20%3D%20%5Cfrac%7Bn%7D%7B2%7D%5B2a%2B%28n-1%29d%5D)
n is the number of terms
a is the first term of the sequence
d is the common difference
Given parameters
n = 7, a = -4 and d = -6-(-4) = -8-(-6) = -2
Required
Sum of the first seven terms of the sequence
![S_7 = \frac{7}{2}[2(-4)+(7-1)(-2)]\\\\S_7 = \frac{7}{2}[-8+(6)(-2)]\\\\S_7 = \frac{7}{2}[-8-12]\\\\\\S_7 = \frac{7}{2} * -20\\\\S_7 = -70](https://tex.z-dn.net/?f=S_7%20%3D%20%5Cfrac%7B7%7D%7B2%7D%5B2%28-4%29%2B%287-1%29%28-2%29%5D%5C%5C%5C%5CS_7%20%3D%20%20%5Cfrac%7B7%7D%7B2%7D%5B-8%2B%286%29%28-2%29%5D%5C%5C%5C%5CS_7%20%3D%20%20%5Cfrac%7B7%7D%7B2%7D%5B-8-12%5D%5C%5C%5C%5C%5C%5CS_7%20%3D%20%5Cfrac%7B7%7D%7B2%7D%20%2A%20-20%5C%5C%5C%5CS_7%20%3D%20-70)
The sum of the nth term of the sequence will be;
![S_n = \frac{n}{2}[2(-4)+(n-1)(-2)]\\\\S_n = \frac{n}{2}[-8+(-2n+2)]\\\\S_n = \frac{n}{2}[-6-2n]\\\\S_n = \frac{-6n}{2} - \frac{2n^2}{2}\\S_n = -3n-n^2\\\\S_n = -n(3+n)](https://tex.z-dn.net/?f=S_n%20%3D%20%5Cfrac%7Bn%7D%7B2%7D%5B2%28-4%29%2B%28n-1%29%28-2%29%5D%5C%5C%5C%5CS_n%20%3D%20%5Cfrac%7Bn%7D%7B2%7D%5B-8%2B%28-2n%2B2%29%5D%5C%5C%5C%5CS_n%20%3D%20%5Cfrac%7Bn%7D%7B2%7D%5B-6-2n%5D%5C%5C%5C%5CS_n%20%3D%20%20%5Cfrac%7B-6n%7D%7B2%7D%20-%20%20%5Cfrac%7B2n%5E2%7D%7B2%7D%5C%5CS_n%20%3D%20-3n-n%5E2%5C%5C%5C%5CS_n%20%3D%20-n%283%2Bn%29)
The sigma notation will be expressed as
. <em>The limit ranges from 1 to 7 since we are to find the sum of the first seven terms of the series.</em>
Answer:
the third/yellow one
Step-by-step explanation:
Answer:
(2,2)
Step-by-step explanation:
If you have any questions about the way I solved it, don't hesitate to ask