Answer:
False
Step-by-step explanation:
A subset is a set whose elements belong to another set
If B is a subset of A, B would contain elements of A
For example, A = {a, b, c} and if B is a subset of A , B = { a, b}
Answer:
<em>A</em>(-3, 6), <em>B</em>(-1, -2), <em>C</em>(-7, 1)
Step-by-step explanation:
To the pre-image after a 270°-counterclockwise rotation [90°-clockwise rotation], just reverse it by doing a 270°-clockwise rotation [90°-counterclockwise rotation]:
Extended Rotation Rules
- 270°-clockwise rotation [90°-counterclockwise rotation] >> (x, y) → (-y, x)
- 270°-counterclockwise rotation [90°-clockwise rotation] >> (x, y) → (y, -x)
- 180°-rotation >> (x, y) → (-x, -y)
So, perform your rotation:
270°-clockwise rotation [90°-counterclockwise rotation] → <em>C</em><em>'</em>[1, 7] was originally at <em>C</em>[-7, 1]
→ <em>B'</em>[-2, 1] was originally at <em>B</em>[-1, -2]
→ <em>A</em><em>'</em>[6, 3] was originally at <em>A</em>[-3, 6]
I am joyous to assist you anytime.
Answer:
nine to the one third power all raised to the third power equals nine raised to the one third times three power equals nine
Step-by-step explanation:
we know that
The <u><em>Power of a Power Property</em></u>
, states that :To find a power of a power, multiply the exponents
so

In this problem we have
![9^{\frac{1}{3}} =\sqrt[3]{9}](https://tex.z-dn.net/?f=9%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%20%3D%5Csqrt%5B3%5D%7B9%7D)
Remember that
![\sqrt[3]{9}=9^{\frac{1}{3}}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B9%7D%3D9%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D)
Raise to the third power
![[9^{\frac{1}{3}}]^3](https://tex.z-dn.net/?f=%5B9%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%5D%5E3)
Applying the power of power property



therefore
nine to the one third power all raised to the third power equals nine raised to the one third times three power equals nine
9514 1404 393
Answer:
BC ≈ 17.0 (neither Crow nor Toad is correct)
Step-by-step explanation:
The left-side ratio of (2+4)/4 = 3/2 suggests BC is 3/2 times the length DE. If that were the case, BC = (3/2)(11) = 16.5, as Crow says.
The right-side ratio of (5+9)/9 = 14/9 suggests that BC 9 is 14/9 times the length DE. If that were the case, BC = (14/9)(11) = 154/9 = 17 1/9 ≈ 17.1, as Toad says.
The different ratios of the two sides (3/2 vs 14/9) tell you that the triangles are NOT similar, so the length of BC cannot be found by referring to the ratios of the given sides.
Rather, the Law of Cosines must be invoked, first to find angle A (109.471°), then to use that angle to compute the length of BC given the side lengths AB and AC. That computation gives BC ≈ 16.971. (See the second attachment.)