Answer: THE first one
Step-by-step explanation:
The first one should be done first because it follows the PEMDAS format. So parentheses is the operation has to be done first according to pemdas.
* Hope this Helps:) Mark me the Brainliest:)
28lbs apples most, 14lbs bananas range, 18 bananas
Answer:
4.05% probability that a randomly selected adult has an IQ greater than 123.4.
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this question, we have that:

Probability that a randomly selected adult has an IQ greater than 123.4.
This is 1 subtracted by the pvalue of Z when X = 123.4. So



has a pvalue of 0.9595
1 - 0.9595 = 0.0405
4.05% probability that a randomly selected adult has an IQ greater than 123.4.
Answer: a.) $50188 to $57812
Step-by-step explanation: <u>Confidence</u> <u>Interval</u> (CI) is an interval of values in which we are confident the true mean is in.
The interval is calculated as
x ± 
a. For a 95% CI, z-value is 1.96.
Solving:
54,000 ± 
54,000 ± 
54,000 ± 1.96*1732.102
54,000 ± 3395
This means the interval is
50605 < μ < 57395
<u>With a 95% confidence interval, the mean starting salary of college graduates is between 50605 and 57395 or </u><u>from 50188 to 57812$.</u>
<u />
b. The mean starting salary for college students in 2017 is $50,516, which is in the confidence interval. Therefore, since we 95% sure the real mean is between 50188 and 57812, there was no significant change since 2017.