![\bf sin(x)[csc(x)-sin(x)]~~=~~cos^2(x) \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ sin(x)\left[\cfrac{1}{sin(x)}-\cfrac{sin(x)}{1} \right]\implies \underline{sin(x)}\left[\cfrac{1-sin^2(x)}{\underline{sin(x)}} \right] \\\\\\ 1-sin^2(x)\implies cos^2(x)](https://tex.z-dn.net/?f=%5Cbf%20sin%28x%29%5Bcsc%28x%29-sin%28x%29%5D~~%3D~~cos%5E2%28x%29%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20sin%28x%29%5Cleft%5B%5Ccfrac%7B1%7D%7Bsin%28x%29%7D-%5Ccfrac%7Bsin%28x%29%7D%7B1%7D%20%5Cright%5D%5Cimplies%20%5Cunderline%7Bsin%28x%29%7D%5Cleft%5B%5Ccfrac%7B1-sin%5E2%28x%29%7D%7B%5Cunderline%7Bsin%28x%29%7D%7D%20%5Cright%5D%20%5C%5C%5C%5C%5C%5C%201-sin%5E2%28x%29%5Cimplies%20cos%5E2%28x%29)
recall again, sin²(θ) + cos²(θ) = 1.
The fence is 26*7=182 square feet. 1 gallon is enough for 350 square feet and x for 182 square feet. => x=182/350=0.52 gallons. I hope I'm right.
A rational number between the two given ones is -0.455, such that:
-0.45 > -0.455 > -0.46
<h3>How to find a rational number between the two given ones?</h3>
A rational number is any number that can be written as a quotient between two integer numbers.
Particularly, any number with a finite number of digits after the decimal point is also a rational number.
So to find a rational number between -0.45 and -0.46 we could se:
-0.455, such that:
-0.45 > -0.455 > -0.46
Learn more about rational numbers:
brainly.com/question/12088221
#SPJ1