Given
P(1,-3); P'(-3,1)
Q(3,-2);Q'(-2,3)
R(3,-3);R'(-3,3)
S(2,-4);S'(-4,2)
By observing the relationship between P and P', Q and Q',.... we note that
(x,y)->(y,x) which corresponds to a single reflection about the line y=x.
Alternatively, the same result may be obtained by first reflecting about the x-axis, then a positive (clockwise) rotation of 90 degrees, as follows:
Sx(x,y)->(x,-y) [ reflection about x-axis ]
R90(x,y)->(-y,x) [ positive rotation of 90 degrees ]
combined or composite transformation
R90. Sx (x,y)-> R90(x,-y) -> (y,x)
Similarly similar composite transformation may be obtained by a reflection about the y-axis, followed by a rotation of -90 (or 270) degrees, as follows:
Sy(x,y)->(-x,y)
R270(x,y)->(y,-x)
=>
R270.Sy(x,y)->R270(-x,y)->(y,x)
So in summary, three ways have been presented to make the required transformation, two of which are composite transformations (sequence).
Answer:
51/12
as a mixed number
4 1/4
Step-by-step explanation:
first you add 8 to 4 which is 12
so the improper fraction would be 51/12
how to turn it in to a mixed number in simplest form
step 1 - Find Whole Number
Calculate out how many times the denominator goes into the numerator. To do that, divide 51 by 12 and keep only what is to the left of the decimal point:
51 / 12 = 4.2500 = 4
Step 2 - Find New Numerator
Multiply the answer from Step 1 by the denominator and deduct that from the original numerator.
51 - (12 x 4) = 3
Step 3 - Put Together
Keep the original denominator and use the answers from Step 1 and Step 2 to get this:
4
3
12
Step 4 - Minimize
Minimize the fraction part from Step 3 by dividing the numerator and denominator by 3, which is the greatest common factor, to get the final answer. 51/12 as a Mixed Number is:
4
1
4
<span>0.38709677419 is your answer</span>
Answer:
- 891 = 3^4 · 11
- 23 = 23
- 504 = 2^3 · 3^2 · 7
- 230 = 2 · 5 · 23
Step-by-step explanation:
23 is a prime number. That fact informs the factorization of 23 and 230.
The sums of digits of the other two numbers are multiples of 9, so each is divisible by 9 = 3^2. Dividing 9 from each number puts the result in the range where your familiarity with multiplication tables comes into play.
891 = 9 · 99 = 9 · 9 · 11 = 3^4 · 11
___
504 = 9 · 56 = 9 · 8 · 7 = 2^3 · 3^2 · 7
___
230 = 10 · 23 = 2 · 5 · 23
_____
<em>Comment on divisibility rules</em>
Perhaps the easiest divisibility rule to remember is that a number is divisible by 9 if the sum of its digits is divisible by 9. That is also true for 3: if the sum of digits is divisible by 3, the number is divisible by 3. Another divisibility rule fall out from these: if an even number is divisible by 3, it is also divisible by 6. Of course any number ending in 0 or 5 is divisible by 5, and any number ending in 0 is divisible by 10.
Since 2, 3, and 5 are the first three primes, these rules can go a ways toward prime factorization if any of these primes are factors. That is, it can be helpful to remember these divisibility rules.