Make a substitution:

Then the system becomes
![\begin{cases}\dfrac{2\sqrt[3]{u}}{u-v}+\dfrac{2\sqrt[3]{u}}{u+v}=\dfrac{81}{182}\\\\\dfrac{2\sqrt[3]{v}}{u-v}-\dfrac{2\sqrt[3]{v}}{u+v}=\dfrac1{182}\end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%5Cdfrac%7B2%5Csqrt%5B3%5D%7Bu%7D%7D%7Bu-v%7D%2B%5Cdfrac%7B2%5Csqrt%5B3%5D%7Bu%7D%7D%7Bu%2Bv%7D%3D%5Cdfrac%7B81%7D%7B182%7D%5C%5C%5C%5C%5Cdfrac%7B2%5Csqrt%5B3%5D%7Bv%7D%7D%7Bu-v%7D-%5Cdfrac%7B2%5Csqrt%5B3%5D%7Bv%7D%7D%7Bu%2Bv%7D%3D%5Cdfrac1%7B182%7D%5Cend%7Bcases%7D)
Simplifying the equations gives
![\begin{cases}\dfrac{4\sqrt[3]{u^4}}{u^2-v^2}=\dfrac{81}{182}\\\\\dfrac{4\sqrt[3]{v^4}}{u^2-v^2}=\dfrac1{182}\end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%5Cdfrac%7B4%5Csqrt%5B3%5D%7Bu%5E4%7D%7D%7Bu%5E2-v%5E2%7D%3D%5Cdfrac%7B81%7D%7B182%7D%5C%5C%5C%5C%5Cdfrac%7B4%5Csqrt%5B3%5D%7Bv%5E4%7D%7D%7Bu%5E2-v%5E2%7D%3D%5Cdfrac1%7B182%7D%5Cend%7Bcases%7D)
which is to say,
![\dfrac{4\sqrt[3]{u^4}}{u^2-v^2}=\dfrac{81\times4\sqrt[3]{v^4}}{u^2-v^2}](https://tex.z-dn.net/?f=%5Cdfrac%7B4%5Csqrt%5B3%5D%7Bu%5E4%7D%7D%7Bu%5E2-v%5E2%7D%3D%5Cdfrac%7B81%5Ctimes4%5Csqrt%5B3%5D%7Bv%5E4%7D%7D%7Bu%5E2-v%5E2%7D)
![\implies\sqrt[3]{\left(\dfrac uv\right)^4}=81](https://tex.z-dn.net/?f=%5Cimplies%5Csqrt%5B3%5D%7B%5Cleft%28%5Cdfrac%20uv%5Cright%29%5E4%7D%3D81)


Substituting this into the new system gives
![\dfrac{4\sqrt[3]{v^4}}{(\pm27v)^2-v^2}=\dfrac1{182}\implies\dfrac1{v^2}=1\implies v=\pm1](https://tex.z-dn.net/?f=%5Cdfrac%7B4%5Csqrt%5B3%5D%7Bv%5E4%7D%7D%7B%28%5Cpm27v%29%5E2-v%5E2%7D%3D%5Cdfrac1%7B182%7D%5Cimplies%5Cdfrac1%7Bv%5E2%7D%3D1%5Cimplies%20v%3D%5Cpm1)

Then

(meaning two solutions are (7, 13) and (-7, -13))
First computer takes x min. For 1 min it does 1/x part of work.
Second computer takes (x+24) min. For one min it does 1/(x+24) part of work.
Both computers for one min do (1/x+1/(x+24)) part of work.
At the same time, both computers for one min do 1/9 part of work.
The wall pushes back with an equal and opposite force. So it pushes with a force of 36N in the opposite direction of the push. This allows you to move away from the wall.
You move the original graph
5
to the left.
Answer:
30
Step-by-step explanation: