Answer:
Q13. y = sin(2x – π/2); y = - 2cos2x
Q14. y = 2sin2x -1; y = -2cos(2x – π/2) -1
Step-by-step explanation:
Question 13
(A) Sine function
y = a sin[b(x - h)] + k
y = a sin(bx - bh) + k; bh = phase shift
(1) Amp = 1; a = 1
(2) The graph is symmetrical about the x-axis. k = 0.
(3) Per = π. b = 2
(4) Phase shift = π/2.
2h =π/2
h = π/4
The equation is
y = sin[2(x – π/4)} or
y = sin(2x – π/2)
B. Cosine function
y = a cos[b(x - h)] + k
y = a cos(bx - bh) + k; bh = phase shift
(1) Amp = 1; a = 1
(2) The graph is symmetrical about the x-axis. k = 0.
(3) Per = π. b = 2
(4) Reflected across x-axis, y ⟶ -y
The equation is y = - 2cos2x
Question 14
(A) Sine function
(1) Amp = 2; a = 2
(2) Shifted down 1; k = -1
(3) Per = π; b = 2
(4) Phase shift = 0; h = 0
The equation is y = 2sin2x -1
(B) Cosine function
a = 2, b = -1; b = 2
Phase shift = π/2; h = π/4
The equation is
y = -2cos[2(x – π/4)] – 1 or
y = -2cos(2x – π/2) - 1
Answer:
Step-by-step explanation: The standard form for linear equations in two variables is Ax+By=C. For example, 2x+3y=5 is a linear equation in standard form. When an equation is given in this form, it's pretty easy to find both intercepts (x and y).
Answer:
x = 3, 5
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtract Property of Equality
<u>Algebra I</u>
- Terms/Coefficients/Degrees
- Standard Form: ax² + bx + c = 0
- Multiple Roots
- Factoring
- Completing the Square: -b/(2a)
Step-by-step explanation:
<u>Step 1: Define</u>
x² - 8x + 15 = 0
<u>Step 2: Solve for </u><em><u>x</u></em>
- [Subtraction Property of Equality] Subtract 15 on both sides: x² - 8x = -15
- Complete the Square [Addition Property of Equality]: x² - 8x + 16 = -15 + 16
- [Complete the Square] Simplify: (x - 4)² = 1
- [Equality Property] Square root both sides: x - 4 = ±1
- [Addition Property of Equality] Add 4 on both sides: x = 4 ± 1
- Evaluate: x = 3, 5
Answer:9x-10=2x+1
Step-by-step explanation: i think.