Answer:
Mass of water produced is 22.86 g.
Explanation:
Given data:
Mass of hydrogen = 2.56 g
Mass of oxygen = 20.32 g
Mass of water = ?
Solution:
Chemical equation:
2H₂ + O₂ → 2H₂O
Number of moles of oxygen:
Number of moles = mass/ molar mass
Number of moles = 20.32 g/ 32 g/mol
Number of moles = 0.635 mol
Number of moles of hydrogen:
Number of moles = mass/ molar mass
Number of moles = 2.56 g/ 2 g/mol
Number of moles = 1.28 mol
Now we will compare the moles of water with oxygen and hydrogen.
O₂ : H₂O
1 : 2
0.635 ; 2×0.635 = 1.27
H₂ : H₂O
2 : 2
1.28 : 1.28
The number of moles of water produced by oxygen are less thus it will be limiting reactant.
Mass of water produced:
Mass = number of moles × molar mass
Mass = 1.27 × 18 g/mol
Mass = 22.86 g
6.02 x 10^6
Hoped that helped.
Answer:
Shown below
Explanation:
a) for BrN3
80+3(14)=122amu
b) forC2H6
2(12) + 6(1) = 30amu
C) for NF2
14+2(19) = 52amu
D) Al2S3
2(27) + 3(32)= 150amu
E) for Fe(NO3)3
56 + 3 [14+3(16)] =242amu
F) Mg3N2
3(24) + 2(14)= 100amu
G) for (NH4)2CO3
2[14 +4(1)] +12 +3(16)=96amu
Answer:
As a result, electrolyte solutions readily conduct electricity. ... By contrast, if a compound dissociates to a small extent, the solution will be a weak conductor of electricity; ... Typically, nonelectrolytes are primarily held together by covalent rather than ionic bonds. ... Explain why some molecules do not dissolve in water.
Answer:
Molecular solids and covalent network solids are two types of solid compounds. The key difference between molecular solid and covalent network solid is that <em>molecular solid forms due to the action of Van der Waal forces </em>where as <em>covalent network solid forms due to the action of covalent chemical bonds.</em>
hope this helps