Answer:
The answer is 4
Step-by-step explanation:
x^2-2x-8=1/4x-1
x^2-9x/4-7=0
4x^2-9x=28
Therefore if we take value of x as 4 aur eq.get balanced...
X is equal to 12
This is because 5 was multiplied and 6 making 30. So you have to multiply 2 and 6 making x 12. Hope that makes sense
Okay, so, to find out if an equation has one solution, an infinite number of solutions, or no solutions, we must first solve the equation:
(a) 6x + 4x - 6 = 24 + 9x
First, combine the like-terms on both sides of the equal sign:
10x - 6 = 24 + 9x
Now, we need to get the numbers with the variable 'x,' on the same side, by subtracting, in this case:
10x - 6 = 24 + 9x
-9x. -9x
______________
X - 6 = 24
Now, we do the opposite of subtraction, and add 6 to both sides:
X - 6 = 24
+6 +6
_________
X = 30
So, this particular equation has one solution.
(a). One solution
_____________________________________________________
(b) 25 - 4x = 15 - 3x + 10 - x
Okay, so again, we combine the like-terms, on the same side of the equal sign:
25 - 4x = 25 - 2x
Now, we get the 2 numbers with the variable 'x,' to the same side of the equal sign:
25 - 4x = 25 - 2x
+ 2x + 2x
________________
25 - 2x = 25
Next, we do the opposite of addition, and, subtract 25 on each side:
25 - 2x = 25
-25 -25
___________
-2x = 0
Finally, because we can't divide 0 by -2, this tells us that this has an infinite number of solutions.
(b) An infinite number of solutions.
__________________________________________________
(c) 4x + 8 = 2x + 7 + 2x - 20
Again, we combine the like-terms, on the same side as the equal sign:
4x + 8 = 4x - 13
Now, we get the 'x' variables on the same side, again, and, we do that by doing the opposite of addition, which, is subtraction:
4x + 8 = 4x - 13
-4x -4x
______________
8 = -13
Finally, because there is no longer an 'x' or variable, we know that this equation has no solution.
(c) No Solution
_________________________________
I hope this helps!
The area <em>A</em> of a trapezoid with height <em>h</em> and bases <em>b</em>₁ and <em>b</em>₂ is equal to the average of the bases times the height:
<em>A</em> = (<em>b</em>₁ + <em>b</em>₂) <em>h</em> / 2
We're given <em>A</em> = 864, <em>h</em> = 24, and one of the bases has length 30, so
864 = (<em>b</em>₁ + 30) 24 / 2
864 = (<em>b</em>₁ + 30) 12
864 = (<em>b</em>₁ + 30) 12
72 = <em>b</em>₁ + 30
<em>b</em>₁ = 42