9514 1404 393
Answer:
(d) f(x) = 2x^2 - 16x + 35
Step-by-step explanation:
The x-coordinate of the extreme will be found at ...
x = -b/(2a)
where the function is f(x) = ax²+bx+c.
The extreme will be a minimum when a > 0. (eliminates choices A and B)
The x-coordinates of the extremes are ...
C: -(-4)/(2(4)) = 1/2
D: -(-16)/(2(2)) = 4 . . . . . matches the requirement
The appropriate choice is ...
f(x) = 2x^2 - 16x + 35
The height x of the right prism is 10 ft if the volume of this right prism is 2,500 ft³.
<h3>What is a rectangular prism?</h3>
It is defined as the six-faced shape, a type of hexahedron in geometry.
It is a three-dimensional shape. It is also called a cuboid.
From the figure:
Volume = 2500 cubic ft
(10)(x)(25) = 2500
250x = 2500
x = 10 ft
Thus, the height x of the right prism is 10 ft if the volume of this right prism is 2,500 ft³.
Learn more about the rectangular prism here:
brainly.com/question/21308574
#SPJ1
Is there a diagram with this question?
<h3>
Answer: 0.5</h3>
========================================================
Explanation:
The ultimate goal is to find the value for lowercase c, or find the length of side c. So we'll use the portion sin(C)/c as part of the law of sines.
We don't know the value of lowercase 'a', so we'll ignore the sin(A)/a portion.
This leaves sin(B)/b
We see that one side is 2 cm long, so this means b = 2. The angle opposite this is 105 degrees, so B = 105.
The angle opposite side c is 15 degrees, so C = 15.
The lowercase letters represent side lengths, while the uppercase letters are angles.
--------------------------
We have enough to apply the law of sines to solve for side c.
sin(B)/b = sin(C)/c
sin(105)/2 = sin(15)/c
c*sin(105) = 2*sin(15) ............. cross multiply
c = 2*sin(15)/sin(105) .............. dividing both sides by sin(105)
c = 0.53589838486224
c = 0.5
Side c is roughly 0.5 cm long.
Make sure your calculator is in degree mode.
Answer:
(f+g)(x)=2x+1+5 - x
(f+g)(x)=x + 6
(f - g)(x)= 2x + 1 - (5- x )
(f - g)(x)= 3x - 4