Answer:
The probability of hitting the circular area = P(H) = favorable area/ total area = Area of the circle / Area of the square
Step-by-step explanation:
= π/9
Step-by-step explanation:
$21=per hour mowling
$17=per hour gardening
only work 16 hours per week
Goals =$275 per week
$275÷16 hours=<u>$</u><u>17.1875</u><u>(</u><u>Each</u><u> </u><u>hour</u><u> </u><u>in</u><u> </u><u>a</u><u> </u><u>week</u><u>)</u>
<u>mow</u><u> </u><u>lawns</u><u>=</u><u> </u><u>$</u><u>17.1875</u><u> </u><u>×</u><u>$</u><u>12</u><u>=</u><u>$</u><u>206.25</u><u>(</u><u>for</u><u> </u><u>16</u><u> </u><u>hours</u><u>)</u>
<u>gardening</u><u>=</u><u>$</u><u>17.1875 </u><u>×</u><u>$17=$292.1875</u><u>(</u><u>for</u><u> </u><u>16</u><u> </u><u>hours</u><u>)</u>
<u>m</u><u>o</u><u>w</u><u>l</u><u>i</u><u>n</u><u>g</u><u> </u><u>lawns</u><u>=</u><u>$</u><u>275</u><u>÷</u><u>$</u><u>21</u><u>=</u><u>13.0952380952</u><u>(</u><u>13</u><u> </u><u>hours</u><u>,</u><u>12</u><u> </u><u>minutes</u><u> </u><u>and</u><u> </u><u>30</u><u> </u><u>seconds</u><u>)</u>
<u>Gardening</u><u> </u><u>=</u><u>$</u><u>275</u><u>÷</u><u>$</u><u>17</u><u>=</u><u> </u><u>$</u><u>16.1764705882</u><u> </u><u>(</u><u>970</u><u> </u><u>hours</u><u>,</u><u>9</u><u> </u><u>minutes</u><u>,</u><u>80</u><u> </u><u>seconds</u><u>)</u>
<u>A</u><u> </u><u>little</u><u> </u><u>help</u><u> </u><u>not</u><u> </u><u>fully</u><u> </u><u>answered</u>
<u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u>
Answer:
(-2,1)
Step-by-step explanation:
The solution is where the two equations/lines intersect, which is at (-2,1)
Yes, the two ratios are equivalent. If you multiply both the numerator and the denominator by 6, you will get 18/42.
<span>If this statement is a True or False question.
Then, TRUE. A "b" value of less than 1 produces a graph with exponential decay.
We consider this formula: y = a*b^x or f(x) =a*b^x
a is the initial value, b is the rate, x is the exponent.
If b has a value of less than 1, as the exponent increases the resulting value of y decreases.
f(x) = 20(0.90)^x
f(1) = 200(0.90)</span>¹ = 180
f(2) = 200(0.90)² = 162
f(3) = 200(0.90)³ = 145.80
f(4) = 200(0.90)⁴ = 131.22
f(5) = 200(0.90)⁵ = 118.10
Exponential decay is the decrease in a quantity. As you can see in the given example the value of f(x) decreases as the value of x increases because the value of b is less than 1.