- The volume of a medium box is 512 cubic inches.
- The ratio of the sides of the small box to the medium box is 1:2.
- The ratio of the area of the small box to the medium box is 1:4.
- The ratio of the volume of the small box to the medium box is 1:8.
<h3>What are the ratio of the small box to the medium box?</h3>
The first step is to determine the side lengths of the small box.
Side length = ∛64 = 4 in
Side lengths of the medium boxes = 4 x 2 = 8 inches
Volume of the medium box = 8³ = 256 cubic inches
The ratio of the sides of the small box to the medium box = 4 : 8 = 1:2.
The ratio of the area of the small box to the medium box= (4 x 4) : (8 x 8) = 1:4.
The ratio of the volume of the small box to the medium box = 4³ : 8³ = 1 : 8.
To learn more about the volume of a cuboid, please check: brainly.com/question/26406747
Answer:
y = - 3x² - 24x - 60
Step-by-step explanation:
The equation of a parabola in vertex form is
y = a(x - h)² + k
where (h, k) are the coordinates of the vertex and a is a multiplier
Here (h, k) = (- 4, - 12 ), thus
y = a(x + 4)² - 12
To calculate a substitute (- 7, - 39) into the equation
- 39 = a(- 7 + 4)² - 12 ( add 12 to both sides )
- 27 = 9a ( divide both sides by 9 )
- 3 = a
y = - 3(x + 4)² - 12 ← in vertex form
Expand (x + 4)²
y = - 3(x² + 8x + 16) - 12
= - 3x² - 24x - 48 - 12
y = - 3x² - 24x - 60 ← in standard form
= - 3(x²
Answer:
yes it would be so do that
Step-by-step explanation:
The best way to solve is by using elimination method.
20x = -58 - 2y
17x = -49 - 2y
Multiply second equation by -1
20x = -58 - 2y
-17x = 49 + 2y
Add equations.
3x = -9
Divide.
x = -3
Plug in -3 into one of the equations.
17(-3) = -49 - 2y
-51 = -49 - 2y
Add 49 to both sides.
-2 = -2y
Divide.
1 = y
So your solution is (-3, 1).
I hope this helps love! :)
We have been given that an account is opened with a balance of $3,000 and relative growth rate for a certain type of mutual fund is 15% per year.
In order to tackle this problem we have to find the value of mutual fund after 5 years. For our purpose we will use compound interest formula.
,where A= amount after t years, P= principal amount, r= interest rate (decimal) and t= number of years.
After substituting our given values in above formula we will get
Now we will solve for A
Therefore, after 5 years mutual fund is worth $6034.07.