Answer:
- Yes, diagonals bisect each other
Step-by-step explanation:
<em>See attached</em>
Plot the points on the coordinate plane
Visually, it is seen that the diagonals bisect each other.
We can prove this by calculating midpoints of AC and BD
<u>Midpoint of AC has coordinates of:</u>
- x = (1 - 1)/2 = 0
- y = (4 - 4)/2 = 0
<u>Midpoint of BD has coordinates of:</u>
- x = (4 - 4)/2 = 0
- y = (-1 + 1)/2 = 0
As per calculations the origin is the bisector of the diagonals.
Apply the rule: 
![3[2 ln(x-1) - lnx] + ln(x+1)=3[ln(x-1)^{2} - lnx ] + ln(x+1)](https://tex.z-dn.net/?f=3%5B2%20ln%28x-1%29%20-%20lnx%5D%20%2B%20ln%28x%2B1%29%3D3%5Bln%28x-1%29%5E%7B2%7D%20-%20lnx%20%5D%20%2B%20ln%28x%2B1%29)
Apply the rule : 
![3[2 ln(x-1) - lnx] + ln(x+1)=3ln\frac{(x-1)^{2} }{x} + ln(x+1)](https://tex.z-dn.net/?f=3%5B2%20ln%28x-1%29%20-%20lnx%5D%20%2B%20ln%28x%2B1%29%3D3ln%5Cfrac%7B%28x-1%29%5E%7B2%7D%20%7D%7Bx%7D%20%2B%20ln%28x%2B1%29)
Apply the rule: 
![3[ln (x-1)^{2} -ln x]+ln (x+1)= ln \frac{(x-1)^{6} }{x^{3} } +log(x+1)](https://tex.z-dn.net/?f=3%5Bln%20%28x-1%29%5E%7B2%7D%20-ln%20x%5D%2Bln%20%28x%2B1%29%3D%20ln%20%5Cfrac%7B%28x-1%29%5E%7B6%7D%20%7D%7Bx%5E%7B3%7D%20%7D%20%2Blog%28x%2B1%29)
Finally, apply the rule: log a + log b = log ab
![3[ln(x-1)^{2} -ln x]+log(x+1)=ln\frac{(x-1)^{6}(x+1) }{x^{3} }](https://tex.z-dn.net/?f=3%5Bln%28x-1%29%5E%7B2%7D%20-ln%20x%5D%2Blog%28x%2B1%29%3Dln%5Cfrac%7B%28x-1%29%5E%7B6%7D%28x%2B1%29%20%7D%7Bx%5E%7B3%7D%20%7D)
Answer:
48
Step-by-step explanation:
Let p = ticket price of the shoes
p * 3/4 = 36
Multiply each side by 4/3
4/3 *3/4 p = 4/3 *36
p = 48
The ticket price is 48 dollars
Answer: tan(14x)
<u>Step-by-step explanation:</u>
Consider the Sum Formula for tan:

The answer is <span>2.5 × 10⁻⁹ × 1.5 × 10³ = 3.75 × 10⁻⁶ </span>