Answer:
Surface area = 663π in².
Volume = (676/3)π in² ≈ 225.33 π in²
Explanation:
1) We know the radius and the lateral area.
2) With the radius you can find the areas of the top and the bottom.
For that, you use the formula:
area of the top = area of the bottom = π r²
∴ π (13 in)² = 169π in² (each)
3) Then, the surface area is the sum of the lateral area and the two bases (top and bottom)
surface area = lateral area + bottom area + top area = 325π in² + 2×169π in² = 663π in².
3) You can also find the height of the cylinder.
Use the formula: lateral area = 2π r h
∴ h = lateral area / [2 π r]
⇒ h = 325 π / [ 2π (13) ] = 12.5 in
4) With the height you can find the volume.
Use the formula: V = (4/3) π r³
∴ V = (4/3) π (13 in)³ = (676/3)π in² ≈ 225.33 π in²
The reflection of BC over I is shown below.
<h3>
What is reflection?</h3>
- A reflection is a mapping from a Euclidean space to itself that is an isometry with a hyperplane as a set of fixed points; this set is known as the reflection's axis (in dimension 2) or plane (in dimension 3).
- A figure's mirror image in the axis or plane of reflection is its image by reflection.
See the attached figure for a better explanation:
1. By the unique line postulate, you can draw only one line segment: BC
- Since only one line can be drawn between two distinct points.
2. Using the definition of reflection, reflect BC over l.
- To find the line segment which reflects BC over l, we will use the definition of reflection.
3. By the definition of reflection, C is the image of itself and A is the image of B.
- Definition of reflection says the figure about a line is transformed to form the mirror image.
- Now, the CD is the perpendicular bisector of AB so A and B are equidistant from D forming a mirror image of each other.
4. Since reflections preserve length, AC = BC
- In Reflection the figure is transformed to form a mirror image.
- Hence the length will be preserved in case of reflection.
Therefore, the reflection of BC over I is shown.
Know more about reflection here:
brainly.com/question/1908648
#SPJ4
The question you are looking for is here:
C is a point on the perpendicular bisector, l, of AB. Prove: AC = BC Use the drop-down menus to complete the proof. By the unique line postulate, you can draw only one segment, Using the definition of, reflect BC over l. By the definition of reflection, C is the image of itself and is the image of B. Since reflections preserve , AC = BC.
Answer:
Step-by-step explanation: the way to find missing anlges are to use trigrometery
The initial payment per month being 30 and each movie being 2.50 means that if the total payment is 45 then you pay for 6 movies per month, 30x+6(2.5x)
For the first one, we know that is a right angle. right angles are 90 degrees. if we subtract 90 - 49 that equals 41. so the second value needs to equal 41. since we have a 3 there already, we are going to subtract 41-3, which is 38. x = 38