Let L and W be the length and width of the given rectangle, respectively. Perimeter is calculated through the equation,
P = 2L + 2W
Substituting the perimeter,
36 = 2L + 2W
Simplifying,
18 = L + W
The area is calculated by multiplying the length and width as below,
A = 80 = LW
Substituting the expressions,
80 = (L)(18 - L)
The value of L from the equation is 8. With this, the value of W is equal to 10.
Therefore, the dimensions of the rectangle are 8 m by 10 m.
Answer:
B. No

Step-by-step explanation:
-A right angle triangle has two complimentary acute angles and one right angle.
-
is usually one of the acute angles and is equivalent to 90º minus it's complimentary acute angle.
-Complimentary angles add up to 90º.
#For complimentary angles:

The two acute angles cannot have the same Cosine value.
Hence, she's not correct.
<h3>
Answer:</h3>
System
Solution
- p = m = 5 — 5 lb peanuts and 5 lb mixture
<h3>
Step-by-step explanation:</h3>
(a) Generally, the equations of interest are one that models the total amount of mixture, and one that models the amount of one of the constituents (or the ratio of constituents). Here, there are two constituents and we are given the desired ratio, so three different equations are possible describing the constituents of the mix.
For the total amount of mix:
... p + m = 10
For the quantity of peanuts in the mix:
... p + 0.2m = 0.6·10
For the quantity of almonds in the mix:
... 0.8m = 0.4·10
For the ratio of peanuts to almonds:
... (p +0.2m)/(0.8m) = 0.60/0.40
Any two (2) of these four (4) equations will serve as a system of equations that can be used to solve for the desired quantities. I like the third one because it is a "one-step" equation.
So, your system of equations could be ...
___
(b) Dividing the second equation by 0.8 gives
... m = 5
Using the first equation to find p, we have ...
... p + 5 = 10
... p = 5
5 lb of peanuts and 5 lb of mixture are required.
Answer:
y-2x -8
Step-by-step explanation:
your jus gonna right it back because it's parallel which means it's the same thing.