Answer:
By the Central Limit Theorem, both would be approximately normal and have the same mean. The difference is in the standard deviation, since as the sample size increases, the standard deviation decreases. So the SRS of 600 would have a smaller standard deviation than the SRS of 200.
Step-by-step explanation:
The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean
and standard deviation
, the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean
and standard deviation
.
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For the sampling distribution of size n of a sample proportion p, the mean is p and the standard deviation is 
Differences between SRS of 200 and of 600
By the Central Limit Theorem, both would be approximately normal and have the same mean. The difference is in the standard deviation, since as the sample size increases, the standard deviation decreases. So the SRS of 600 would have a smaller standard deviation than the SRS of 200.
B is correct. Substitute the week number for w in the function. Follow order of operations and you should get you N, the number of fruit flies for that week. For instance week 2:
N= 2(5)^2-1
N=2(5)^1
N=2(5)
N= 10
N= 10 corresponds to the table
Answer:
53
Step-by-step explanation:
70-17= 53
Answer:
Rule: replace x by x - a where a is the number of units that you want to move right. a must be greater than 0. x - - a would move left.
Step-by-step explanation:
You want f(x) to move 3 units to the right.
That would mean that x would be replaced by x - 3. Just to be sure let's try it.
- Suppose you have f(x) = x^2 + 6x + 5 It is graphed as the red line
- Now suppose you want to move 3 units right.
- It would replaced like f(x - 3) = (x - 3)^2 + 6(x - 3) + 5 which is the blue line
- Notice nothing else is changed. The blue line looks exactly like the red line except that it is shifted 3 units to the right.