Answer: The answers is alternate interior angles.
Step-by-step explanation: First of all, the questions marks given in the figure are renamed in the attached figure as (a), (b), (c) and (d).
For (a): Since AC is parallel to A'C' and A'D is a transversal for these two parallel lines, so, ∠CDB' = ∠B'A'C', because these are alternate interior angles.
For (b): Since BC is parallel to B'C' and A'B' is a transversal, so ∠BEB' = ∠A'B'C', because these are alternate interior angles.
For (c): Since AB is parallel to A'B' and AD is a transversal, so ∠BAC = ∠CDB', because these are alternate interior angles.
For (d): Since AB is parallel to A'B' and BE is a transversal, so ∠ABC = ∠BEB', because these are alternate interior angles.
Thus, all the questions marks are the reasons that the given angles are equal because they are alternate interior angles.
Help with what there is nothing?
30 is your mystery answer :)
It will take 2/3 hour or 40 minutes to fill the tank if both pipes are used.
Let pi be pipe 1 and pi2 be pipe 2
pi = 1 / 1
pi2 = 1 / 2
together = 1/1 + 1/2 ;
3/2 time ; 2/3 hour.
It will take 2/3 hour or 40 minutes to fill the tank if both pipes are used.
Problem-solving is the act of defining a problem; figuring out the motive of the problem; identifying, prioritizing, and deciding on alternatives for a solution; and implementing an answer.
Learn more about Problem-solving here: brainly.com/question/13818690
#SPJ4
Answer:
the Largest shed dimension is 13.5 ft by 13.5 ft
Largest Area is 182.25 ft²
Step-by-step explanation:
Given that;
Perimeter = 54 ft
P = 2( L + B ) = 54ft
L + B = 54/2
L + B = 27 ft
B = 27 - L ------------Let this be equation 1
Area A = L × B
from equ 1, B = 27 - L
Area A = L × ( 27 - L)
A = 27L - L²
for Maxima or Minima
dA/dL = 0
27 - 2L = 0
27 = 2L
L = 13.5 ft
Now, d²A/dL² = -2 < 0
That is, area is maximum at L = 13.5 using second derivative test
B = 27 - L
we substitute vale of L
B = 27 - 13.5 = 13.5 ft
Therefore the Largest shed dimension = 13.5 ft by 13.5 ft
Largest Area = 13.5 × 13.5 = 182.25 ft²