Concluimos que la opción correcta es <em>"Solo II"</em>.
Una expresión es una sucesión aritmética si y solo si existe entre dos elementos <em>consecutivos</em> cualesquiera de la serie la misma diferencia. La sucesión aritmética es definida por una expresión de la forma:
,
(1)
Donde
son coeficientes de la sucesión.
Asimismo, una expresión es una sucesión geométrica si y solo si entre dos elementos <em>consecutivos</em> cualesquiera de la serie existe la misma razón. La sucesión geométrica es definida por una expresión de la forma:
,
(2)
Donde
son coeficientes de la sucesión.
Por último, una expresión es una sucesión monótona creciente si dados dos elementos <em>consecutivos</em> de una serie, el elemento posterior es siempre mayor que el elemento anterior. Matemáticamente, debe satisfacerse la siguiente condición:
(3)
Esta claro por inspección directa que la sucesión dada no es aritmética ni geométrica y cabe comprobar si es monótona creciente. Valiéndonos de (3), realizamos las operaciones algebraicas pertinentes:




Como puede apreciarse,
. Por tanto, la sucesión es monótona y creciente.
En consecuencia, concluimos que la opción correcta es <em>"Solo II"</em>.
Invitamos cordialmente a leer esta pregunta sobre sucesiones: brainly.com/question/21709418
No. A polynomial equation in one variablel ooks like P(x) = Q(x), where P and Q are polynomials.
Consider polynomial equations x^2 = 3 and x^2 = 1.
Obviously they have real solutions.
Subtract the two polynomial equations:
(x^2 - x^2) = (3 - 1)
0 = 2...
We get the polynomial equation 0 = 2. We call this a polynomial equation because single constants are also by definition polynomials.
Obviously 0 = 2 has no real solution.
The answer is C. This would make the total cost 90 dollars without paying for a membership card or shipping.
Answer:
The second option will cost her less than the first one.
Step-by-step explanation:
In order to solve this problem we will create two functions to represent the cost of the car in function of the miles drove by her.
For the first option we have:

For the second option we have:

Since she intends to drive it for 10,000 miles per year for 6 years, then the total mileage she intends to drive her car is 60,000 miles. Applying this to the formula of each car and we have:


The second option will cost her less than the first one.