Answer:
114.0g/538.5cm^3=0.2117 glcm^3
Step-by-step explanation:
Answer:
B
Step-by-step explanation:
Given
sinΘ =
, then
Θ =
(
) = 45° → B
The number of books sold is 473.
<u>Step-by-step explanation:</u>
- The original cost of each book = $0.64
- The selling price of each book = $0.75
The difference between the original price and selling price of the book gives the profit per book.
The profit of one book = Selling price - Original price
Let,
- The total number of books be 'x'.
- The number of books sold be 'y'.
- The unsold books is 100.
- The total profit is -12 because it was gone to a loss of $12.
Therefore, the equation is formed as
total Profit = 0.75y - 0.64x
⇒ 0.75y - 0.64x = -12 --------(1)
Total books = sold books + unsold books
x = y + 100
⇒ x-y = 100 -------(2)
Substitute x= 100+y in the eq(1),
0.75y - 0.64(100+y) = -12
0.75y - 64 -0.64y = -12
0.11y = -12 +64
y = 52 / 0.11
y = 472.7
y ≅ 473
The number of book sold is 473 books.
The total number of books is (100+473) = 573 books.
Answer:
largets area is 32 feet cubed
Step-by-step explanation:
8=4 foot 2 for each side w and e and 32feet n and s 16 each side
Answer:
○ 
Step-by-step explanation:
![\displaystyle \boxed{y = 3sin\:(2x + \frac{\pi}{2})} \\ y = Asin(Bx - C) + D \\ \\ Vertical\:Shift \hookrightarrow D \\ Horisontal\:[Phase]\:Shift \hookrightarrow \frac{C}{B} \\ Wavelength\:[Period] \hookrightarrow \frac{2}{B}\pi \\ Amplitude \hookrightarrow |A| \\ \\ Vertical\:Shift \hookrightarrow 0 \\ Horisontal\:[Phase]\:Shift \hookrightarrow \frac{C}{B} \hookrightarrow \boxed{-\frac{\pi}{4}} \hookrightarrow \frac{-\frac{\pi}{2}}{2} \\ Wavelength\:[Period] \hookrightarrow \frac{2}{B}\pi \hookrightarrow \boxed{\pi} \hookrightarrow \frac{2}{2}\pi \\ Amplitude \hookrightarrow 3](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cboxed%7By%20%3D%203sin%5C%3A%282x%20%2B%20%5Cfrac%7B%5Cpi%7D%7B2%7D%29%7D%20%5C%5C%20y%20%3D%20Asin%28Bx%20-%20C%29%20%2B%20D%20%5C%5C%20%5C%5C%20Vertical%5C%3AShift%20%5Chookrightarrow%20D%20%5C%5C%20Horisontal%5C%3A%5BPhase%5D%5C%3AShift%20%5Chookrightarrow%20%5Cfrac%7BC%7D%7BB%7D%20%5C%5C%20Wavelength%5C%3A%5BPeriod%5D%20%5Chookrightarrow%20%5Cfrac%7B2%7D%7BB%7D%5Cpi%20%5C%5C%20Amplitude%20%5Chookrightarrow%20%7CA%7C%20%5C%5C%20%5C%5C%20Vertical%5C%3AShift%20%5Chookrightarrow%200%20%5C%5C%20Horisontal%5C%3A%5BPhase%5D%5C%3AShift%20%5Chookrightarrow%20%5Cfrac%7BC%7D%7BB%7D%20%5Chookrightarrow%20%5Cboxed%7B-%5Cfrac%7B%5Cpi%7D%7B4%7D%7D%20%5Chookrightarrow%20%5Cfrac%7B-%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%7B2%7D%20%5C%5C%20Wavelength%5C%3A%5BPeriod%5D%20%5Chookrightarrow%20%5Cfrac%7B2%7D%7BB%7D%5Cpi%20%5Chookrightarrow%20%5Cboxed%7B%5Cpi%7D%20%5Chookrightarrow%20%5Cfrac%7B2%7D%7B2%7D%5Cpi%20%5C%5C%20Amplitude%20%5Chookrightarrow%203)
<em>OR</em>
![\displaystyle \boxed{y = 3cos\:2x} \\ y = Acos(Bx - C) + D \\ \\ Vertical\:Shift \hookrightarrow D \\ Horisontal\:[Phase]\:Shift \hookrightarrow \frac{C}{B} \\ Wavelength\:[Period] \hookrightarrow \frac{2}{B}\pi \\ Amplitude \hookrightarrow |A| \\ \\ Vertical\:Shift \hookrightarrow 0 \\ Horisontal\:[Phase]\:Shift \hookrightarrow 0 \\ Wavelength\:[Period] \hookrightarrow \frac{2}{B}\pi \hookrightarrow \boxed{\pi} \hookrightarrow \frac{2}{2}\pi \\ Amplitude \hookrightarrow 3](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cboxed%7By%20%3D%203cos%5C%3A2x%7D%20%5C%5C%20y%20%3D%20Acos%28Bx%20-%20C%29%20%2B%20D%20%5C%5C%20%5C%5C%20Vertical%5C%3AShift%20%5Chookrightarrow%20D%20%5C%5C%20Horisontal%5C%3A%5BPhase%5D%5C%3AShift%20%5Chookrightarrow%20%5Cfrac%7BC%7D%7BB%7D%20%5C%5C%20Wavelength%5C%3A%5BPeriod%5D%20%5Chookrightarrow%20%5Cfrac%7B2%7D%7BB%7D%5Cpi%20%5C%5C%20Amplitude%20%5Chookrightarrow%20%7CA%7C%20%5C%5C%20%5C%5C%20Vertical%5C%3AShift%20%5Chookrightarrow%200%20%5C%5C%20Horisontal%5C%3A%5BPhase%5D%5C%3AShift%20%5Chookrightarrow%200%20%5C%5C%20Wavelength%5C%3A%5BPeriod%5D%20%5Chookrightarrow%20%5Cfrac%7B2%7D%7BB%7D%5Cpi%20%5Chookrightarrow%20%5Cboxed%7B%5Cpi%7D%20%5Chookrightarrow%20%5Cfrac%7B2%7D%7B2%7D%5Cpi%20%5C%5C%20Amplitude%20%5Chookrightarrow%203)
You will need the above information to help you interpret the graph. First off, keep in mind that although this looks EXACTLY like the cosine graph, if you plan on writing your equation as a function of <em>sine</em>, then there WILL be a horisontal shift, meaning that a C-term will be involved. As you can see, the photograph on the right displays the trigonometric graph of
in which you need to replase "cosine" with "sine", then figure out the appropriate C-term that will make the graph horisontally shift and map onto the <em>sine</em> graph [photograph on the left], accourding to the horisontal shift formula above. Also keep in mind that the −C gives you the OPPOCITE TERMS OF WHAT THEY <em>REALLY</em> ARE, so you must be careful with your calculations. So, between the two photographs, we can tell that the <em>sine</em> graph [photograph on the right] is shifted
to the right, which means that in order to match the <em>cosine</em> graph [photograph on the left], we need to shift the graph BACKWARD
which means the C-term will be negative, and by perfourming your calculations, you will arrive at
So, the sine graph of the cosine graph, accourding to the horisontal shift, is
Now, with all that being said, in this case, sinse you ONLY have a graph to wourk with, you MUST figure the period out by using wavelengths. So, looking at where the graph WILL hit
from there to
they are obviously
apart, telling you that the period of the graph is
Now, the amplitude is obvious to figure out because it is the A-term, but of cource, if you want to be certain it is the amplitude, look at the graph to see how low and high each crest extends beyond the <em>midline</em>. The midline is the centre of your graph, also known as the vertical shift, which in this case the centre is at
in which each crest is extended <em>three units</em> beyond the midline, hence, your amplitude. So, no matter how far the graph shifts vertically, the midline will ALWAYS follow.
I am delighted to assist you at any time.