Answer:
6
Step-by-step explanation:
This is basically 24 divided by 4 since he/she is dividing 24 into 4 equal groups.
24/4=6
Resposta:
Primer rectangle:
Amplada = 11
Longitud = 14
Segon rectangle:
Amplada = 12
Longitud = 15
Tercer rectangle:
Amplada = 13
Longitud = 16
Explicació pas a pas:
Donat que:
Primer rectangle:
Amplada = x
Longitud = x + 3
2n rectangle:
Augment de la dimensió d'1 cm respecte al primer rectangle;
Amplada = x + 1
Longitud = x + 4
3r rectangle:
Augment de la dimensió de 2 cm respecte al primer rectangle;
Amplada = x + 2
Longitud = x + 5
Suma dels tres perímetres del rectangle:
Perímetre d'un rectangle: 2 (l + O)
Primer rectangle:
2 (x + x + 3) = 2 (2x + 3) = 4x + 6
2n:
2 (x + 1 + x + 4) = 2 (2x + 5) = 4x + 10
3r:
2 (x + 2 + x + 5) = 2 (2x + 7) = 4x + 14
Suma de perímetres = 162
(4x + 6 + 4x + 10 + 4x + 14) = 162
12x + 30 = 162
12x = 162 - 30
12x = 130
x = 11
Per tant,
Primer rectangle:
Amplada = 11
Longitud = 11 + 3 = 14
2n rectangle:
Amplada = 11 + 1 = 12
Longitud = 11 + 4 = 15
3r rectangle:
Amplada = 11 + 2 = 13
Longitud = 11 + 5 = 16
They can because of zero property. If we set them equal to zero we get their roots which is 3 and -2. This is the same on the x axis which is goes through. We can mark these points.
The circumference can be obtained fairly easily by simply substituting the d in c = πd for the colony's given diameter of 12 mm. Performing that calculation using the approximation of π ≈ 3.14, we obtain a circumference of 12 x 3.14 = 37.68 mm.
To find the radius, remember how the diameter and radius of a circle are defined. The radius is a length extending from the center of a circle to a point on its circumference, and a diameter is a line extending from one point on the circle's circumference to an opposite point, passing through the circle's center along the way. The diameter can, in this way, be defined as twice the length of the radius, which means we can find the radius of a circle by taking half of its diameter. In this case, our diameter is 12 mm, so our radius would be 6 mm.